856 research outputs found
Quantum key distribution using polarized coherent states
We discuss a continuous variables method of quantum key distribution
employing strongly polarized coherent states of light. The key encoding is
performed using the variables known as Stokes parameters, rather than the field
quadratures. Their quantum counterpart, the Stokes operators
(i=1,2,3), constitute a set of non-commuting operators, being the precision of
simultaneous measurements of a pair of them limited by an uncertainty-like
relation. Alice transmits a conveniently modulated two-mode coherent state, and
Bob randomly measures one of the Stokes parameters of the incoming beam. After
performing reconciliation and privacy amplification procedures, it is possible
to distill a secret common key. We also consider a non-ideal situation, in
which coherent states with thermal noise, instead of pure coherent states, are
used for encoding.Comment: Inclusion of a discussion about noise not controlled by Eve;
inclusion of a figure. A simplified version of this paper was submitted to a
Conference in Brazil (XXVII ENFMC) in 16/02/200
Quantum Key Distribution using Continuous-variable non-Gaussian States
In this work we present a quantum key distribution protocol using
continuous-variable non-Gaussian states, homodyne detection and post-selection.
The employed signal states are the Photon Added then Subtracted Coherent States
(PASCS) in which one photon is added and subsequently one photon is subtracted.
We analyze the performance of our protocol, compared to a coherent state based
protocol, for two different attacks that could be carried out by the
eavesdropper (Eve). We calculate the secret key rate transmission in a lossy
line for a superior channel (beam-splitter) attack, and we show that we may
increase the secret key generation rate by using the non-Gaussian PASCS rather
than coherent states. We also consider the simultaneous quadrature measurement
(intercept-resend) attack and we show that the efficiency of Eve's attack is
substantially reduced if PASCS are used as signal states.Comment: We have included an analysis of the simultaneous quadrature
measurement attack plus 2 figures; we have also clarified some point
The kth nearest neighbor method for estimation of entropy changes from molecular ensembles
All processes involving molecular systems entail a balance between associated enthalpic and entropic changes. Molecular dynamics simulations of the end-points of a process provide in a straightforward way the enthalpy as an ensemble average. Obtaining absolute entropies is still an open problem and most commonly pathway methods are used to obtain free energy changes and thereafter entropy changes. The kth nearest neighbor (kNN) method has been first proposed as a general method for entropy estimation in the mathematical community 20 years ago. Later, it has been applied to compute conformational, positional–orientational, and hydration entropies of molecules. Programs to compute entropies from molecular ensembles, for example, from molecular dynamics (MD) trajectories, based on the kNN method, are currently available. The kNN method has distinct advantages over traditional methods, namely that it is possible to address high-dimensional spaces, impossible to treat without loss of resolution or drastic approximations with, for example, histogram-based methods. Application of the method requires understanding the features of: the kth nearest neighbor method for entropy estimation; the variables relevant to biomolecular and in general molecular processes; the metrics associated with such variables; the practical implementation of the method, including requirements and limitations intrinsic to the method; and the applications for conformational, position/orientation and solvation entropy. Coupling the method with general approximations for the multivariable entropy based on mutual information, it is possible to address high dimensional problems like those involving the conformation of proteins, nucleic acids, binding of molecules and hydration. This article is categorized under: Molecular and Statistical Mechanics > Free Energy Methods Theoretical and Physical Chemistry > Statistical Mechanics Structure and Mechanism > Computational Biochemistry and Biophysics
HELP-based matrices for stimuli-responsive controlled release of bioactive compounds
Direct delivery of bioactive
substances to the sites of injury represents a key
issue for therapies based on regenerative medicine
and tissue repair [1]. Protein derived hydrogels
represent an interesting system for this purpose
because they possess several features that make
them suitable to this purpose. A method for
preparation of hydrogel matrices based on Human
Elastin-like Polypeptide (HELP) has been set up
[2]. HELPs are a family of elastin-like
recombinant biopolymers modeled after the most
regularly repeated domain in human tropoelastin,
retaining peculiar properties as self-assembling
and thermoresponsive behavior [3]. In this study
we assayed two elastolytic activities from different
sources to test their potential to specifically
degrade the HELP matrix
Dentin Exposure after Tooth Preparation for Laminate Veneers: A Microscopical Analysis to Evaluate the Influence of Operators’ Expertise
Background: To assess the quantity of dentin exposure detected by 3 operators with different clinical expertise for 2 designs of tooth preparation for laminate veneers: window (WI) and butt joint (BJ). Methods: 20 intact maxillary central incisors were collected and then prepared for laminate veneers to a depth of 0.6 mm, with a cervical mini-chamfer finish line of 0.3 mm. Each prepared tooth was analyzed by 3 operators with different expertise: undergraduate student (ST), general practitioner (GP), and prosthodontist (PR), at sight under magnification. Besides descriptive statistics (CI 95%), 2-way ANOVA and Games–Howell tests were used to analyze differences among groups (α = 0.05). Results: The means of percentage and area of detected dentin exposure were WI = 30.48%, 21.57 mm2; BJ = 30.99%, 21.97 mm2; ST/WI = 22.82%, 16.44 mm2; GP/WI = 58.05%, 40.64 mm2; PR/WI = 10.55%, 7.63 mm2; ST/BJ = 28.99%, 20.83 mm2; GP/BJ = 40.56%, 28.32 mm2; PR/BJ = 23.42%, 16.75 mm2. Significant differences were found between ST/WI vs. GP/WI (p = 0.005) and GP/WI vs. PR/WI (p < 0.001). Conclusions: There was no difference in detection of exposed dentin among operators with different expertise for BJ preparation, whereas differences were found between the general practitioner and the other 2 operators in WI. Moreover, the quantity of exposed dentin was not related to different tooth preparation designs
Characteristics of Submucous Myomas and the Risk of Anemia
Background and Objectives: Uterine fibroids still represent the most common indication for hysterectomy for benign pathologies. In the United States, more than 479,000 hysterectomies are performed annually, 46.6% for myomas and 47.7% in women aged from 18 to 44 years. By applying appropriateness criteria to this procedure, it has been estimated that overuse ranges from 16 to 70%. One of the main reasons that induce patients and gynecologists to consider hysterectomy is represented by severe anemia. Materials and Methods: This is a retrospective cohort study of 202 patients with uterine fibroids diagnosed by transvaginal ultrasound who underwent a hysteroscopic procedure. Myoma grade, size, location, and number were assessed by transvaginal scan and office hysteroscopy and correlated to the pre-treatment hemoglobin level. Results: Univariate analysis showed that anemia does not have a statistically significant association with myoma number and with age considered as a numerical predictor. In the patients with myoma type 0, there is a possibility of 81% having anemia regardless of menorrhagia. On the contrary, in patients with myoma type 1 or type 2, the possibility of having anemia varies according to the presence or absence of menorrhagia. If there is menorrhagia, the risk of moderate anemia is only present for myomas >60 mm. Conclusions: The results of this study may contribute to defining objective criteria for the management of submucous myomas and anemia. Our data suggest that submucosal myomas type 0 >10 mm should always be treated, putting patients at risk for anemia. Myomas type 2 and 3 should be treated for the risk of anemia in the presence of menorrhagia episodes or if > of 60 mm. Adequate management of anemia and myomas could reduce the rate of unnecessary hysterectomies
Massless Decoupled Doublers: Chiral Yukawa Models and Chiral Gauge Theories
We present a new method for regularizing chiral theories on the lattice. The
arbitrariness in the regularization is used in order to decouple massless
replica fermions. A continuum limit with only one fermion is obtained in
perturbation theory and a Golterman-Petcher like symmetry related to the
decoupling of the replicas in the non-perturbative regime is identified. In the
case of Chiral Gauge Theories gauge invariance is broken at the level of the
regularization, so our approach shares many of the characteristics of the Rome
approach.Comment: 11 page
Optimization of Anti-SARS-CoV-2 Treatments Based on Curcumin, Used Alone or Employed as a Photosensitizer.
Curcumin, the bioactive compound of the spice Curcuma longa, has already been reported as a potential COVID-19 adjuvant treatment due to its immunomodulatory and anti-inflammatory properties. In this study, SARS-CoV-2 was challenged with curcumin; moreover, curcumin was also coupled with laser light at 445 nm in a photodynamic therapy approach. Curcumin at a concentration of 10 ÎĽM, delivered to the virus prior to inoculation on cell culture, inhibited SARS-CoV-2 replication (reduction >99%) in Vero E6 cells, possibly due to disruption of the virion structure, as observed using the RNase protection assay. However, curcumin was not effective as a prophylactic treatment on already-infected Vero E6 cells. Notably, when curcumin was employed as a photosensitizer and blue laser light at 445 nm was delivered to a mix of curcumin/virus prior to the inoculation on the cells, virus inactivation was observed (>99%) using doses of curcumin that were not antiviral by themselves. Photodynamic therapy employing crude curcumin can be suggested as an antiviral option against SARS-CoV-2 infection
Airborne Sound Power Levels and Spectra of Noise Sources in Port Areas
Airborne port noise has historically suffered from a lack of regulatory assessment compared to other transport infrastructures. This has led to several complaints from citizens living in the urban areas surrounding ports, which is a very common situation, especially in countries facing the Mediterranean sea. Only in relatively recent years has an effort been made to improve this situation, which has resulted in a call for and financing of numerous international cooperation research projects, within the framework of programs such as EU FP7, H2020, ENPI-CBC MED, LIFE, and INTERREG. These projects dealt with issues and aspects of port noise, which is an intrinsically tangled problem, since several authorities and companies operate within the borders of ports, and several different noise sources are present at the same time. In addition, ship classification societies have recently recognized the problem and nowadays are developing procedures and voluntary notations to assess the airborne noise emission from marine vessels. The present work summarizes the recent results of research regarding port noise sources in order to provide a comprehensive database of sources that can be easily used, for example, as an input to the noise mapping phase, and can subsequently prevent citizens' exposure to noise
- …