373 research outputs found

    Auxetic regions in large deformations of periodic frameworks

    Get PDF
    In materials science, auxetic behavior refers to lateral widening upon stretching. We investigate the problem of finding domains of auxeticity in global deformation spaces of periodic frameworks. Case studies include planar periodic mechanisms constructed from quadrilaterals with diagonals as periods and other frameworks with two vertex orbits. We relate several geometric and kinematic descriptions.Comment: Presented at the International Conference on "Interdisciplinary Applications of Kinematics" (IAK18), Lima, Peru, March 201

    Attractor Flows from Defect Lines

    Full text link
    Deforming a two dimensional conformal field theory on one side of a trivial defect line gives rise to a defect separating the original theory from its deformation. The Casimir force between these defects and other defect lines or boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns out, that these flows are constant reparametrizations of gradient flows of the g-functions of the chosen defect or boundary condition. The special flows associated to supersymmetric boundary conditions in N=(2,2) superconformal field theories agree with the attractor flows studied in the context of black holes in N=2 supergravity.Comment: 28 page

    Probing Nuclear forces beyond the drip-line using the mirror nuclei 16^{16}N and 16^{16}F

    Get PDF
    Radioactive beams of 14^{14}O and 15^{15}O were used to populate the resonant states 1/2+^+, 5/2+^+ and 0,1,20^-,1^-,2^- in the unbound 15^{15}F and 16^{16}F nuclei respectively by means of proton elastic scattering reactions in inverse kinematics. Based on their large proton spectroscopic factor values, the resonant states in 16^{16}F can be viewed as a core of 14^{14}O plus a proton in the 2s1/2_{1/2} or 1d5/2_{5/2} shell and a neutron in 1p1/2_{1/2}. Experimental energies were used to derive the strength of the 2s1/2_{1/2}-1p1/2_{1/2} and 1d5/2_{5/2}-1p1/2_{1/2} proton-neutron interactions. It is found that the former changes by 40% compared with the mirror nucleus 16^{16}N, and the second by 10%. This apparent symmetry breaking of the nuclear force between mirror nuclei finds explanation in the role of the large coupling to the continuum for the states built on an =0\ell=0 proton configuration.Comment: 6 pages, 3 figures, 2 tables, accepted for publication as a regular article in Physical Review

    First observation of 54Zn and its decay by two-proton emission

    Full text link
    The nucleus 54Zn has been observed for the first time in an experiment at the SISSI/LISE3 facility of GANIL in the quasi-fragmentation of a 58Ni beam at 74.5 MeV/nucleon in a natNi target. The fragments were analysed by means of the ALPHA-LISE3 separator and implanted in a silicon-strip detector where correlations in space and time between implantation and subsequent decay events allowed us to generate almost background free decay spectra for about 25 different nuclei at the same time. Eight 54Zn implantation events were observed. From the correlated decay events, the half-life of 54Zn is determined to be 3.2 +1.8/-0.8 ms. Seven of the eight implantations are followed by two-proton emission with a decay energy of 1.48(2) MeV. The decay energy and the partial half-life are compared to model predictions and allow for a test of these two-proton decay models.Comment: 4 pages, 4 figures, accepted for publication in PR

    The photometric properties of a vast stellar substructure in the outskirts of M33

    Full text link
    We have surveyed 40\sim40sq.degrees surrounding M33 with CFHT MegaCam in the g and i filters, as part of the Pan-Andromeda Archaeological Survey. Our observations are deep enough to resolve the top 4mags of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low-surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations of this feature are consistent with an old population with <[Fe/H]>1.6<[Fe/H]>\sim-1.6dex and an interquartile range in metallicity of 0.5\sim0.5dex. We construct a surface brightness map of M33 that traces this feature to μV33\mu_V\simeq33mags\,arcsec2^{-2}. At these low surface brightness levels, the structure extends to projected radii of 40\sim40kpc from the center of M33 in both the north-west and south-east quadrants of the galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns with the orientation of the HI disk warp. We calculate a lower limit to the integrated luminosity of the structure of 12.7±0.5-12.7\pm0.5mags, comparable to a bright dwarf galaxy such as Fornax or AndII and slightly less than $1\$ of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the HI disk that occurs at similar azimuth to the warp in HI. The data also hint at a low-level, extended stellar component at larger radius that may be a M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results, and we discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.Comment: Accepted for publication in ApJ. 17 figures. ApJ preprint forma

    First direct observation of two protons in the decay of 45^{45}Fe with a TPC

    Get PDF
    The decay of the ground-state two-proton emitter 45Fe was studied with a time-projection chamber and the emission of two protons was unambiguously identified. The total decay energy and the half-life measured in this work agree with the results from previous experiments. The present result constitutes the first direct observation of the individual protons in the two-proton decay of a long-lived ground-state emitter. In parallel, we identified for the first time directly two-proton emission from 43Cr, a known beta-delayed two-proton emitter. The technique developped in the present work opens the way to a detailed study of the mechanism of ground-state as well as beta-delayed two-proton radioactivity.Comment: 4 pages, 5 figure

    Spectroscopy of 18^{18}Na: Bridging the two-proton radioactivity of 19^{19}Mg

    Full text link
    The unbound nucleus 18^{18}Na, the intermediate nucleus in the two-proton radioactivity of 19^{19}Mg, was studied by the measurement of the resonant elastic scattering reaction 17^{17}Ne(p,17^{17}Ne)p performed at 4 A.MeV. Spectroscopic properties of the low-lying states were obtained in a R-matrix analysis of the excitation function. Using these new results, we show that the lifetime of the 19^{19}Mg radioactivity can be understood assuming a sequential emission of two protons via low energy tails of 18^{18}Na resonances

    New pathway to bypass the 15O waiting point

    Full text link
    We propose the sequential reaction process 15^{15}O(pp,γ)(β+\gamma)(\beta^{+})16^{16}O as a new pathway to bypass of the 15^{15}O waiting point. This exotic reaction is found to have a surprisingly high cross section, approximately 1010^{10} times higher than the 15^{15}O(pp,β+\beta^{+})16^{16}O. These cross sections were calculated after precise measurements of energies and widths of the proton-unbound 16^{16}F low lying states, obtained using the H(15^{15}O,p)15^{15}O reaction. The large (p,γ)(β+)(p,\gamma)(\beta^{+}) cross section can be understood to arise from the more efficient feeding of the low energy wing of the ground state resonance by the gamma decay. The implications of the new reaction in novae explosions and X-ray bursts are discussed.Comment: submitte

    Prolate-Spherical Shape Coexistence at N=28 in 44^{44}S

    Get PDF
    The structure of 44^{44}S has been studied using delayed γ\gamma and electron spectroscopy at \textsc{ganil}. The decay rates of the 02+^+_2 isomeric state to the 21+^+_1 and 01+^+_1 states have been measured for the first time, leading to a reduced transition probability B(E2~:~21+^{+}_1\rightarrow02+)^{+}_2)= 8.4(26)~e2^2fm4^4 and a monopole strength ρ2\rho^2(E0~:~02+^{+}_2\rightarrow01+)^{+}_1) =~8.7(7)×\times103^{-3}. Comparisons to shell model calculations point towards prolate-spherical shape coexistence and a phenomenological two level mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter
    corecore