54 research outputs found
Thermal imaging metrology using high dynamic range near-infrared photovoltaic-mode camera
The measurement of a wide temperature range in a scene requires hardware capable of high dynamic range imaging. We describe a novel near-infrared thermal imaging system operating at a wavelength of 940 nm based on a commercial photovoltaic mode high dynamic range camera and analyse its measurement uncertainty. The system is capable of measuring over an unprecedently wide temperature range; however, this comes at the cost of a reduced temperature resolution and increased uncertainty compared to a conventional CMOS camera operating in photodetective mode. Despite this, the photovoltaic mode thermal camera has an acceptable level of uncertainty for most thermal imaging applications with an NETD of 4–12 °C and a combined measurement uncertainty of approximately 1% K if a low pixel clock is used. We discuss the various sources of uncertainty and how they might be minimised to further improve the performance of the thermal camera. The thermal camera is a good choice for imaging low frame rate applications that have a wide inter-scene temperature range
The quantitative soil pit method for measuring belowground carbon and nitrogen stocks
Many important questions in ecosystem science require estimates of stocks of soil C and nutrients. Quantitative soil pits provide direct measurements of total soil mass and elemental content in depth-based samples representative of large volumes, bypassing potential errors associated with independently measuring soil bulk density, rock volume, and elemental concentrations. The method also allows relatively unbiased sampling of other belowground C and nutrient stocks, including roots, coarse organic fragments, and rocks. We present a comprehensive methodology for sampling these pools with quantitative pits and assess their accuracy, precision, effort, and sampling intensity as compared to other methods. At 14 forested sites in New Hampshire, nonsoil belowground pools (which other methods may omit, double-count, or undercount) accounted for upward of 25% of total belowground C and N stocks: coarse material accounted for 4 and 1% of C and N in the O horizon; roots were 11 and 4% of C and N in the O horizon and 10 and 3% of C and N in the B horizon; and soil adhering to rocks represented 5% of total B-horizon C and N. The top 50 cm of the C horizon contained the equivalent of 17% of B-horizon carbon and N. Sampling procedures should be carefully designed to avoid treating these important pools inconsistently. Quantitative soil pits have fewer sources of systematic error than coring methods; the main disadvantage is that because they are time-consuming and create a larger zone of disturbance, fewer observations can be made than with cores
Soil respiration in cucumber field under crop rotation in solar greenhouse
Crop residues are the primary source of carbon input in the soil carbon pool. Crop rotation can impact the plant biomass returned to the soil, and influence soil respiration. To study the effect of previous crops on soil respiration in cucumber (Cucumis statirus L.) fields in solar greenhouses, soil respiration, plant height, leaf area and yield were measured during the growing season (from the end of Sept to the beginning of Jun the following year) from 2007 to 2010. The cucumber was grown following fallow (CK), kidney bean (KB), cowpea (CP), maize for green manure (MGM), black bean for green manure (BGM), tomato (TM), bok choy (BC). As compared with CK, KB, CP, MGM and BGM may increase soil respiration, while TM and BC may decrease soil respiration at full fruit stage in cucumber fields. Thus attention to the previous crop arrangement is a possible way of mitigating soil respiration in vegetable fields. Plant height, leaf area and yield had similar variation trends under seven previous crop treatments. The ratio of yield to soil respiration revealed that MGM is the crop of choice previous to cucumber when compared with CK, KB, CP, BGM, TM and BC
Stable Carbon isotope compositions of Eastern Beringian grasses and sedges: investigating their potential as paleoenvironmental indicators
The nature of vegetation cover present in Beringia during the last glaciation remains unclear. Uncertainty rests partly with the limitations of conventional paleoecological methods. A lack of sufficient taxonomic resolution most notably associated with the grasses and sedges restricts the paleoecological inferences that can be made. Stable isotope measurements of subfossil plants are frequently used to enhance paleoenvironmental reconstructions. We present an investigation of the stable
carbon isotope composition (d13C) of modern and subfossil grasses and sedges (graminoids) from Eastern Beringia. Modern grasses from wet habitats had a mean
d13C of 229.1% (standard deviation [SD] 5 2.1%, n 5 75), while those from dry habitats had a mean of 226.9% (SD 5 1.19, n 5 27). Sedges (n 5 ,50) from dry, wet, marsh, and sand dune habitats had specific habitat ranges. Four modern C4
grasses had d13C values typical of C4 plants. Analyses were also conducted using subfossil graminoid remains from several sedimentary paleoecological contexts (e.g.,arctic ground squirrel nests, loess, permafrost, and paleosols) in Eastern Beringia. Results from these subfossil samples, ranging in age from .40,000 to ca. 11,000 cal. yr BP, illustrate that the d13C of graminoid remains has altered during the past. The
range of variation in the subfossil samples is within the range from modern graminoid specimens from dry and wet habitats. The results indicate that stable isotopes could contribute to a comprehensive and multiproxy reconstruction of
Beringian paleoenvironments
- …