1,198 research outputs found

    The beta functions of a scalar theory coupled to gravity

    Full text link
    We study a scalar field theory coupled to gravity on a flat background, below Planck's energy. Einstein's theory is treated as an effective field theory. Within the context of Wilson's renormalization group, we compute gravitational corrections to the beta functions and the anomalous dimension of the scalar field, taking into account threshold effects.Comment: 13 pages, plainTe

    Calorons in Weyl Gauge

    Get PDF
    We demonstrate by explicit construction that while the untwisted Harrington-Shepard caloron AμA_\mu is manifestly periodic in Euclidean time, with period β=1T\beta=\frac{1}{T}, when transformed to the Weyl (A0=0A_0=0) gauge, the caloron gauge field AiA_i is periodic only up to a large gauge transformation, with winding number equal to the caloron's topological charge. This helps clarify the tunneling interpretation of these solutions, and their relation to Chern-Simons numbers and winding numbers.Comment: 10 pages, 10 figures, a sign typo in equation 27 is correcte

    Perturbative and non-perturbative aspects of the proper time renormalization group

    Full text link
    The renormalization group flow equation obtained by means of a proper time regulator is used to calculate the two loop beta function and anomalous dimension eta of the field for the O(N) symmetric scalar theory. The standard perturbative analysis of the flow equation does not yield the correct results for both beta and eta. We also show that it is still possible to extract the correct beta and eta from the flow equation in a particular limit of the infrared scale. A modification of the derivation of the Exact Renormalization Group flow, which involves a more general class of regulators, to recover the proper time renormalization group flow is analyzed.Comment: 26 pages.Latex.Version accepted for publicatio

    Self-Dual N=8 Supergravity as Closed N=2(4) Strings

    Full text link
    As open N=2 or 4 strings describe self-dual N=4 super Yang-Mills in 2+2 dimensions, the corresponding closed (heterotic) strings describe self-dual ungauged (gauged) N=8 supergravity. These theories are conveniently formulated in a chiral superspace with general supercoordinate and local OSp(8|2) gauge invariances. The super-light-cone and covariant-component actions are analyzed. Because only half the Lorentz group is gauged, the gravity field equation is just the vanishing of the torsion.Comment: 17 pg., (uuencoded dvi file; revision: forgot 1 stupid term in the last equation) ITP-SB-92-3

    Biological weed control to relieve millions from ambrosia allergies in Europe

    Get PDF
    Invasive alien species (IAS) can substantially affect ecosystem services and human well-being. However, quantitative assessments of their impact on human health are rare, and the benefits of implementing sustainable IAS management likely to be underestimated. Here we report the effects of the allergenic plant Ambrosia artemisiifolia on public health in Europe and the potential impact of the accidentally introduced leaf beetle Ophraella communa on the number of patients and healthcare costs. We find that, prior to the establishment of O. communa, some 13.5 million persons suffered from Ambrosia-induced allergies in Europe, causing costs of Euro 7.4 billion annually. Our projections reveal that biological control of A. artemisiifolia will reduce the number of patients by approximately 2.3 million and the health costs by Euro 1.1 billion per year. Our conservative calculations indicate that the currently discussed economic costs of IAS underestimate the real costs and thus also the benefits from biological control

    New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions

    Get PDF
    Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions

    Nonperturbative Evolution Equation for Quantum Gravity

    Get PDF
    A scale--dependent effective action for gravity is introduced and an exact nonperturbative evolution equation is derived which governs its renormalization group flow. It is invariant under general coordinate transformations and satisfies modified BRS Ward--Identities. The evolution equation is solved for a simple truncation of the space of actions. In 2+epsilon dimensions, nonperturbative corrections to the beta--function of Newton's constant are derived and its dependence on the cosmological constant is investigated. In 4 dimensions, Einstein gravity is found to be ``antiscreening'', i.e., Newton's constant increases at large distances.Comment: 35 pages, late

    Running coupling in Yang-Mills theory - a flow equation study -

    Get PDF
    The effective average action of Yang-Mills theory is analyzed in the framework of exact renormalization group flow equations. Employing the background-field method and using a cutoff that is adjusted to the spectral flow, the running of the gauge coupling is obtained on all scales. In four dimensions and for the gauge groups SU(2) and SU(3), the coupling approaches a fixed point in the infrared.Comment: 35 pages, 3 figures, v2: References added, minor improvements, version to appear in PR

    Space-Time Supersymmetry of Extended Fermionic Strings in 2+22 + 2 Dimensions

    Full text link
    The N=2N=2 fermionic string theory is revisited in light of its recently proposed equivalence to the non-compact N=4N=4 fermionic string model. The issues of space-time Lorentz covariance and supersymmetry for the BRST quantized N=2N=2 strings living in uncompactified 2+22 + 2 dimensions are discussed. The equivalent local quantum supersymmetric field theory appears to be the most transparent way to represent the space-time symmetries of the extended fermionic strings and their interactions. Our considerations support the Siegel's ideas about the presence of SO(2,2)SO(2,2) Lorentz symmetry as well as at least one self-dual space-time supersymmetry in the theory of the N=2(4)N=2(4) fermionic strings, though we do not have a compelling reason to argue about the necessity of the {\it maximal} space-time supersymmetry. The world-sheet arguments about the absence of all string massive modes in the physical spectrum, and the vanishing of all string-loop amplitudes in the Polyakov approach, are given on the basis of general consistency of the theory.Comment: 29 pages, LaTeX, ITP-UH-1/9

    Numerical Approximations Using Chebyshev Polynomial Expansions

    Full text link
    We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi's method). The solutions are exact at these points, apart from round-off computer errors and the convergence of other numerical methods used in connection to solving the linear system of equations. Applications to initial value problems in time-dependent quantum field theory, and second order boundary value problems in fluid dynamics are presented.Comment: minor wording changes, some typos have been eliminate
    • …
    corecore