2,593 research outputs found

    Analytical study of coherence in seeded modulation instability

    Get PDF
    We derive analytical expressions for the coherence in the onset of modulation instability, in excellent agreement with thorough numerical simulations. As usual, we start by a linear perturbation analysis, where broadband noise is added to a continuous wave (CW) pump; then, we investigate the effect of adding a deterministic seed to the CW pump, a case of singular interest as it is commonly encountered in parametric amplification schemes. Results for the dependence of coherence on parameters such as fiber type, pump power, propagated distance, seed signal-to-noise ratio are presented. Finally, we show the importance of including higher-order linear and nonlinear dispersion when dealing with generation in longer wavelength regions (mid IR). We believe these results to be of relevance when applied to the analysis of the coherence properties of supercontinua generated from CW pumps.Comment: 6 pages, 8 figure

    The irreversible evolution of buildings

    Get PDF
    Buildings, which are in fact ecosystems (living and inanimate organisms interacting together), are nowadays conceived and operated on the base of energy assessments underpinned by the first law of thermodynamics, and design strategies work towards energy conservation. Different approaches, based on the second law of thermodynamics, exist in research; they use the thermodynamic function called exergy - a measure of energy quality obtained from the combination of first and second law - and their scope is still centred on conservation strategies, optimised through irreversibility reduction. However, irreversibility plays a key role in nature, as entropy production dictates direction and modality of all processes and real phenomena are actually irreversible. The main problem related to the forefront of high-efficiency buildings is their high cost and complexity, which contrast stridently with the needs of the largest part of the built environment: effective low-budget sustainable solutions, easy to raise and control by non-specialised users. This research, through a pragmatic methodology, mixes practical experiences from low-budget construction sites with concepts from the relatively new discipline of non-equilibrium thermodynamics, and proposes an alternative energy design approach based on the second law of thermodynamics. Thinking of buildings as evolving ecosystems, their ability to perceive and exploit useful gradients can be enhanced through a deeper understanding of the role of irreversibility as the driving force of spontaneous processes, and imperfection as an intrinsic characteristic of architecture

    Frequency modulation of spin torque oscillator pairs

    Full text link
    The current controlled modulation of nano-contact based spin torque oscillator (STO) pairs is studied in both the synchronized and non-synchronized states. The synchronized state shows a well behaved modulation and demonstrates robust mutual locking even under strong modulation. The power distribution of the modulation sidebands can be quantitatively described by assuming a single oscillator model. However, in the non-synchronized state, the modulation sidebands are not well described by the model, indicating interactions between the two individual nano-contact STOs. These findings are promising for potential applications requiring the modulation of large synchronized STO arrays

    Non-linear frequency and amplitude modulation of a nano-contact spin torque oscillator

    Full text link
    We study the current controlled modulation of a nano-contact spin torque oscillator. Three principally different cases of frequency non-linearity (d2f/dIdc2d^{2}f/dI^{2}_{dc} being zero, positive, and negative) are investigated. Standard non-linear frequency modulation theory is able to accurately describe the frequency shifts during modulation. However, the power of the modulated sidebands only agrees with calculations based on a recent theory of combined non-linear frequency and amplitude modulation.Comment: 4 pages, 4 figure

    Local-Field Theory of the BCS-BEC Crossover

    Get PDF
    We develop a self-consistent theory unifying the description of a quantum Fermi gas in the presence of a Fano-Feshbach resonance in the whole phase diagram ranging from BCS to BEC type of superfluidity and from narrow to broad resonances, including the fluctuations beyond mean field. Our theory covers a part of the phase diagram which is not easily accessible by Quantum Monte Carlo simulations and is becoming interesting for a new class of experiments in cold atoms

    Universal decay law in charged-particle emission and exotic cluster radioactivity

    Full text link
    A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the QQ-values of the outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is found to be a generalization of the Geiger-Nuttall law in α\alpha radioactivity and explains well all known cluster decays. Predictions on the most likely emissions of various clusters are presented.Comment: 2 figure

    Huge Seebeck coefficients in non-aqueous electrolytes

    Full text link
    The Seeebeck coefficients of the non-aqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol and ethylene-glycol are measured in a temperature range from T=30 to T=45 C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or "structure making" effects of tetraalkylammonium ions on the structure of alcohols.Comment: Submitted to J. Chem. Phy

    Thermoelectric energy recovery at ionic-liquid/electrode interface

    Get PDF
    A Thermally Chargeable Capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile is electrically charged by applying a tempera- ture gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic- liquid interface is 5 micro μ\muF for each platinum electrode while it becomes four orders of magnitude larger 36\approx 36 mF for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging pro- cess at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.Comment: 8 pages, 11 figure
    corecore