825 research outputs found

    Spectrum and Franck-Condon factors of interacting suspended single-wall carbon nanotubes

    Get PDF
    A low energy theory of suspended carbon nanotube quantum dots in weak tunnelling coupling with metallic leads is presented. The focus is put on the dependence of the spectrum and the Franck-Condon factors on the geometry of the junction including several vibronic modes. The relative size and the relative position of the dot and its associated vibrons strongly influence the electromechanical properties of the system. A detailed analysis of the complete parameters space reveals different regimes: in the short vibron regime the tunnelling of an electron into the nanotube generates a plasmon-vibron excitation while in the long vibron regime polaron excitations dominate the scenario. The small, position dependent Franck-Condon couplings of the small vibron regime convert into uniform, large couplings in the long vibron regime. Selection rules for the excitations of the different plasmon-vibron modes via electronic tunnelling events are also derived.Comment: 23 pages, 8 figures, new version according to the published on

    Band Model Calculations for CFCl3 in the 8-12 micron Region

    Get PDF
    A Goody random band model with a Voigt line profile is used to calculate the band absorption of CFCB at various pressures at room and stratospheric (216 K) temperatures. Absorption coefficients and line spacings are computed

    Aharonov-Bohm Effect for Parallel and T-shaped Double Quantum Dots

    Full text link
    We investigate the Aharonov-Bohm (AB) effect for the double quantum dots in the Kondo regime using the slave-boson mean-field approximation. In contrast to the non-interacting case, where the AB oscillation generally has the period of 4π\pi when the two-subring structure is formed via the interdot tunneling tct_c, we find that the AB oscillation has the period of 2π\pi in the Kondo regime. Such effects appear for the double quantum dots close to the T-shaped geometry even in the charge-fluctuation regime. These results follow from the fact that the Kondo resonance is always fixed to the Fermi level irrespective of the detailed structure of the bare dot-levels.Comment: 3 pages, 4 figures; minor change

    Mission X: Train Like an Astronaut Pilot Study

    Get PDF
    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experience

    Interference in interacting quantum dots with spin

    Full text link
    We study spectral and transport properties of interacting quantum dots with spin. Two particular model systems are investigated: Lateral multilevel and two parallel quantum dots. In both cases different paths through the system can give rise to interference. We demonstrate that this strengthens the multilevel Kondo effect for which a simple two-stage mechanism is proposed. In parallel dots we show under which conditions the peak of an interference-induced orbital Kondo effect can be split.Comment: 8 pages, 8 figure

    Tunneling broadening of vibrational sidebands in molecular transistors

    Full text link
    Transport through molecular quantum dots coupled to a single vibration mode is studied in the case with strong coupling to the leads. We use an expansion in the correlation between electrons on the molecule and electrons in the leads and show that the tunneling broadening is strongly suppressed by the combination of the Pauli principle and the quantization of the oscillator. As a consequence the first Frank-Condon step is sharper than the higher order ones, and its width, when compared to the bare tunneling strength, is reduced by the overlap between the groundstates of the displaced and the non-displaced oscillator.Comment: 8 pages, 3 figures. PRB, in pres

    Detection of X-ray Clusters of Galaxies by Matching RASS Photons and SDSS Galaxies within GAVO

    Full text link
    A new method for a simultaneous search for clusters of galaxies in X-ray photon maps and optical galaxy maps is described. The merging of X-ray and optical data improves the source identification so that a large amount of telescope time for spectroscopic follow-up can be saved. The method appears thus ideally suited for the analysis of the recently proposed wide-angle X-ray missions like DUO and ROSITA. As a first application, clusters are extracted from the 3rd version of the ROSAT All-Sky Survey and the Early Date Release of the Sloan Digital Sky Survey (SDSS). The time-consuming computations are performed within the German Astrophysical Virtual Observatory (GAVO). On a test area of 140 square degrees, 75 X-ray clusters are detected down to an X-ray flux limit of 35×1013ergs1cm23-5\times 10^{-13} {\rm erg} {\rm s}^{-1} {\rm cm}^{-2} in the ROSAT energy band 0.1-2.4 keV. The clusters have redshifts z0.5z\le 0.5. The survey thus fills the gap between traditional large-area X-ray surveys and serendipitous X-ray cluster searches based on pointed observations, and has the potential to yield about 4,000 X-ray clusters after completion of SDSS.Comment: 19 pages, low-resolution figures, accepted for publication in Astronomy and Astrophysic

    Interference and interaction effects in multi-level quantum dots

    Full text link
    Using renormalization group techniques, we study spectral and transport properties of a spinless interacting quantum dot consisting of two levels coupled to metallic reservoirs. For strong Coulomb repulsion UU and an applied Aharonov-Bohm phase ϕ\phi, we find a large direct tunnel splitting Δ(Γ/π)cos(ϕ/2)ln(U/ωc)|\Delta|\sim (\Gamma/\pi)|\cos(\phi/2)|\ln(U/\omega_c) between the levels of the order of the level broadening Γ\Gamma. As a consequence we discover a many-body resonance in the spectral density that can be measured via the absorption power. Furthermore, for ϕ=π\phi=\pi, we show that the system can be tuned into an effective Anderson model with spin-dependent tunneling.Comment: 5 pages, 4 figures included, typos correcte

    Single electron-phonon interaction in a suspended quantum dot phonon cavity

    Full text link
    An electron-phonon cavity consisting of a quantum dot embedded in a free-standing GaAs/AlGaAs membrane is characterized in Coulomb blockade measurements at low temperatures. We find a complete suppression of single electron tunneling around zero bias leading to the formation of an energy gap in the transport spectrum. The observed effect is induced by the excitation of a localized phonon mode confined in the cavity. This phonon blockade of transport is lifted at magnetic fields where higher electronic states with nonzero angular momentum are brought into resonance with the phonon energy.Comment: 4 pages, 4 figure

    Low frequency current noise of the single-electron shuttle

    Get PDF
    Coupling between electronic and mechanical degrees of freedom in a single electron shuttle system can cause a mechanical instability leading to shuttle transport of electrons between external leads. We predict that the resulting low frequency current noise can be enhanced due to amplitude fluctuations of the shuttle oscillations. Moreover, at the onset of mechanical instability a pronounced peak in the low frequency noise is expected.Comment: 14 pages, 3 figures, 1 tabl
    corecore