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Abstract. A low-energy theory of suspended carbon nanotube quantum dots
in weak tunnelling coupling with metallic leads is presented. The focus is
on the dependence of the spectrum and the Franck–Condon factors on the
geometry of the junction including several vibronic modes. The relative size
and the relative position of the dot and its associated vibrons strongly influence
the electromechanical properties of the system. A detailed analysis of the
complete parameters space reveals different regimes: in the short vibron regime
the tunnelling of an electron into the nanotube generates a plasmon–vibron
excitation, whereas in the long vibron regime polaron excitations dominate the
scenario. The small, position-dependent Franck–Condon couplings of the small
vibron regime convert into uniform, large couplings in the long vibron regime.
Selection rules for the excitations of the different plasmon–vibron modes via
electronic tunnelling events are also derived.
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1. Introduction

Nanoelectromechanical systems (NEMS) are characterized by a peculiar interplay between
electronic and mechanical degrees of freedom [1]. Suspended carbon nanotubes constitute a
particularly interesting realization of NEMS due to their remarkable electronic and vibronic
properties [2–4]. NEMS can be realized, however, in a variety of different flavours, with
single-molecule junctions [5–9], suspended and laterally confined two-dimensional electron
gases [10], silicon [11] or suspended graphene [12]. Interesting vibrational effects in electronic
transport have been observed in several recent experiments on suspended single-wall carbon
nanotube (SWCNT) quantum dots [13–15]. These experimental works have triggered several
attempts [15–18] to theoretically explain some characteristic features of the measured stability
diagrams (i.e. of the differential conductance in a bias voltage–gate voltage colour map).
In particular, the height of the conductance peaks associated with the vibronic resonances
is in quantitative agreement [13] with the predictions of a simple Franck–Condon model
for a single electronic level coupled to a harmonic mode (the so-called Anderson–Holstein
model) [19–23]. Nevertheless, the size of the electron phonon couplings required to fit the
experimental data has remained essentially impossible to achieve with a microscopic theory
[16, 17], without introducing large screening effects [18]. Moreover, the experimental data
present negative differential conductance features which go beyond the capability of the simple
Anderson–Holstein model. Different extensions of this model [24–27] including asymmetric
coupling or multiple electronic levels have been proposed to explain NDCs. In a recent
work [18], they have been attributed to a spatial-dependent Franck–Condon factor, as it naturally
occurs in a clamped nanotube, combined with the assumption of a vibron mode being mostly
localized near one of the two dot ends.

Convinced of the fundamental importance of the geometrical configuration of the junction
on the transport characteristics of a suspended SWCNT, we improve and extend here the work
presented in [18]. Specifically, we calculate the spectrum and the tunnelling matrix elements
over the entire parameters space obtained varying the relative length and relative position of
the vibron with respect to the quantum dot including the effect of higher vibronic modes. The
treatment of a wide parameters space is relevant since it allows for a unified picture of different
results presented in the literature [17, 18]. Also the inclusion of higher vibronic modes seemed
to us a necessary extension for two reasons: there is no real energy separation between the
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Figure 1. Different realizations of a nanojunction with a suspended SWCNT.
The lengths Ld of the quantum dot and Lv of the vibrons are also indicated
together with their position. The length and position of the vibrons are assumed
to coincide with the suspended part of the tube. The length and position of
the dot depend instead on many factors such as for example the weak or
strong hybridization of the SWCNT and the metallic leads and the presence of
impurities or of side gates. The labelling of the different configurations is given
according to the general one used in figure 2.

different vibrational modes since the frequency of the nth vibronic mode is just an nth multiple
of the fundamental frequencyω of the lowest one; furthermore, the very same dispersion relation
(linear with respect to the mode number n) implies the presence of several degenerate vibronic
configurations for the system, a necessary condition for interference triggered NDC features in
the stability diagrams of nanojunctions in the single-electron transistor setup [28–32].

The spectrum is obtained via the exact diagonalization of the system Hamiltonian with
the mechanical degrees of freedom being coupled to both the total charge and the plasmons
of the nanotube. As a result, at low energies the system is described by a set of displaced
vibron-plasmon excitations and the tunnelling matrix elements reduce to the product of the
Franck–Condon factors, one for each vibron–plasmon mode. Importantly, the Franck–Condon
couplings are different for the different modes and depend crucially on the geometry of the
system. A detailed analysis of the complete parameters space reveals different regimes: in the
short vibron regime, the tunnelling of an electron into the nanotube generates a plasmon–vibron
excitation, whereas in the long vibron regime the polaron excitation dominates the scenario.
The small, position-dependent Franck–Condon couplings of the small vibron regime convert
into uniform, large couplings in the plasmonic case.

This paper is organized as follows. In section 2, the model Hamiltonian of a suspended
SWCNT coupled to several stretching modes is introduced. Particular emphasis is given to
the dependence of the electron–vibron coupling on the geometry of the system; see figure 1.
A detailed analysis of the coupling constants as a function of the geometrical parameters is
performed. A set of canonical transformations including a polaron transformation is employed
in section 3 to obtain the spectrum of the SWCNT in the presence of electron–electron and
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electron–vibron interactions. Both analytical results for limiting cases and general numerical
findings (see figure 4) on the entire parameters space are discussed. As is known from the theory
of Franck–Condon blockade in the simplest Anderson–Holstein model [20, 22], the polaron
transformation also crucially affects the tunnelling Hamiltonian describing the coupling to the
source and drain leads. In section 4, an analytical expression for the tunnelling matrix elements
is derived. A detailed analysis of the associated Franck–Condon couplings is performed,
revealing different regimes and selection rules for the tunnelling processes depending on the
geometrical configurations. Conclusions are drawn in section 5.

2. Low-energy Hamiltonian of suspended single-wall carbon nanotubes

The low-energy spectrum of finite-size, interacting metallic SWCNTs has been discussed in [33]
within a mean-field approach and in [34, 35] within a bosonization framework going beyond the
mean-field results. Bosonization is also the natural approach to include the effects of coupling to
the longitudinal stretching modes [17, 18]. Here, following [17, 18, 34], we derive and discuss
the spectrum and many-body states of suspended metallic SWCNTs. Particular emphasis will
be given to the dependence of the electron–vibron coupling on the geometrical configuration
of the system. An analytical expression for the electron–vibron coupling constants in terms of
the relevant geometrical parameters is derived and plays a crucial role in the analysis of the
spectrum and the matrix elements conducted in the following sections.

We thus consider a Hamiltonian of the form

Ĥ sys = Ĥ 0 + V̂ee + Ĥ v + Ĥ ev, (1)

where Ĥ 0 is the noninteracting Hamiltonian of a finite-size, metallic SWCNT, V̂ee describes the
electron–electron interaction, Ĥ v is associated with the longitudinal stretching modes, whereas
Ĥ ev describes the electron–vibron coupling.

2.1. Metallic nanotubes at low energies

Exemplarily, we shall carry out the quantitative analysis for armchair SWCNTs. The extension
to arbitrary chiralities, however, does not change either the essence of the calculations or
the main results presented here. In armchair SWCNTs at low energies and under periodic
boundary conditions, only the gapless energy subbands with linear dispersion touching at the
Fermi points F = ±K0êx (also denoted by Dirac points), where êx is directed along the tube
axis, are relevant [36, 37]. Imposing open boundary conditions along the tube length Ld, the
eigenfunctions of the noninteracting Hamiltonian Ĥ 0 are the standing waves [34, 35]

ϕrκ (Er)=
1

√
2

∑
F

sgn(F) eisgn(F)κx
∑

p

f prϕpF(Er), (2)

where ϕpF (Er) describes fast oscillating Bloch waves on the graphene sublattice p = ± at the
Fermi point, F. The branch index r = ± accounts for left (+) and right (−) moving electrons.
For armchair SWCNTs, it holds f pr =

1
√

2
if p = + and f pr = −

r
√

2
if p = −. The parameter

κ =
π

Ld
(nκ +1) , nκ ∈ Z , |1|< 1

2 , (3)
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measures the wave number with respect to the Fermi points K0, while 1 has to be introduced if
there is no integer n with K0 =

πn
Ld

. Including the spin degree of freedom σ the Hamiltonian Ĥ 0

therefore reads

Ĥ 0 = h̄vF

∑
rσ

r
∑
κ

κ ĉ†
rσκ ĉrσκ, (4)

where vF ≈ 8.1 × 105 m s−1 is the Fermi velocity. Thus, the level spacing of the noninteracting
system is given by ε0 = h̄vF

π

Ld
while ε1 = ε01 denotes the energy mismatch between the r = ±

branches. Moreover, the operator ĉrσκ annihilates an electron in the state |ϕrκ〉|σ 〉. In turn, the
electron field operator is expressed in terms of the wave functions ϕrκ (Er) as

9̂σ (Er)=

∑
rκ

ϕrκ (Er) ĉrσκ . (5)

The electron–electron interaction assumes the standard form

V̂ee =
1

2

∑
σ,σ ′

∫
dEr
∫

dEr ′9̂†
σ (Er)9̂

†
σ ′(Er ′)U (Er − Er ′)9̂σ ′(Er ′)9̂σ (Er), (6)

where for the actual calculations we model U (Er − Er ′) by the so-called Ohno potential [35]

U (Er − Er ′)= U0

[
1 +

(
U0ε|Er − Er ′

|

α

)2
]−1/2

, (7)

where a reasonable choice of the on-site energy is [35] U0 = 15 eV, the dielectric constant is
ε ≈ 1.4–2.4 and α = 14.397 eV Å.

The Coulomb interaction causes Umklapp, backward and forward scattering processes
among the electrons. Away from half filling it is reasonable to neglect Umklapp scattering.
We also disregard backscattering processes, which is a valid approximation for nanotubes
with not too small radii [35]. The forward scattering processes can be fully included within
a Tomonaga–Luttinger (TL) model for SWCNTs [17, 36], yielding the TL Hamiltonian

Ĥ 0 + V̂ee ≈ Ĥ TL = Ĥ N +
∑

j

Ĥ j , (8)

where Ĥ N describes the fermionic configuration of the nanotube and Ĥ j represents the bosonic
excitations with the index j = c+, s+, c−, s− labelling the four excitation sectors for total
charge, total spin, relative (with respect to the two electronic subbands) charge and relative
spin, respectively. The fermionic component of (8) can be cast into the form

Ĥ N =
ε0

4

∑
j

N̂ 2
j

2
+ ε1 N̂ c− + Ec

N̂ 2
c+

2
, (9)

where the particle number operators for the different charge and spin sectors are defined by
N̂ c+ =

∑
rσ N̂ rσ , N̂ c− =

∑
rσ sgn(r)N̂ rσ , N̂ s+ =

∑
rσ sgn(σ )N̂ rσ and N̂ s− =

∑
rσ sgn(rσ)N̂ rσ ,

and the operator N̂ rσ counts the particles with spin σ and pseudospin r . The electron–electron
interaction is parameterized, in the fermionic part of the Hamiltonian, by Ec, i.e. the charging
energy of the SWCNT quantum dot. Finally, H j describes the bosonic excitation of the sector j .
In the long wavelength limit, it reads

Ĥ j =
ε0

g j

∑
n>1

n b̂ †
j,nb̂ j,n, (10)
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where the sum runs over the mode number n. Due to the Coulomb interaction the factor g j < 1
for the sector c+, whereas g j = 1 for the other cases. For unscreened interaction gc+ ≈ 0.2
[35, 36].

2.2. The electron–vibron Hamiltonian

The low-energy vibrational excitations of the nanotube can be described in terms of low-energy
acoustic modes [3, 38, 39]. These modes are coupled to the electronic degrees of freedom
either via a deformation potential (associated with local variations in area) or to bond length
modifications. The latter coupling mechanism has a coupling constant one order of magnitude
smaller than the one associated with the deformation potential [3]. Hence, the twisting modes
that involve pure shear and thus a modification of the bond length can be neglected. Likewise
the bending and breathing modes, although coupled via the dominant deformation potential,
do not play a significant role [3, 38]. In fact, the bending modes couple only quadratically
to the electronic degrees of freedom, whereas the breathing modes lie too high in energy to
be excited in low-bias transport experiments. Thus, in doubly clamped SWCNTs, only the
stretching modes can be retained, in agreement with experimental conclusions [13].

Following [17], the stretching mode Hamiltonian is expressed in a continuum model as

Ĥ v =
1

2

∫ xv+ Lv
2

xv−
Lv
2

dx

[
1

ζ
P̂2(x)+ ζv2

st

(
∂x û(x)

)2
]
, (11)

where ζ = 2πRM , with R being the tube radius, M the carbon mass per unit area and vst the
velocity of the longitudinal stretching mode. Moreover, xv and Lv are the position of the centre
and the length of the vibron, respectively. Typical SWCNT parameters are vst = 2.4 × 104 m s−1

and M = 3.80 × 10−7 kg m−2.
Note that the positions and the lengths of the dot and of the vibron do not necessarily

coincide. The length of the vibron (Lv) is readily estimated as the distance between the
electrodes that clamp the nanotube and it is defined as the length of the free-standing portion
of the tube. Instead, the relation between the size Ld of the quantum dot and the geometrical
properties of the junction is much more complex. The best way of estimating Ld is to extract
it from transport measurements, which give the mean-level spacing and the charging energy of
the system. The position of the centre of the dot xd can be taken as a free parameter.

In figure 1, we sketch four possible physical realizations of different configurations. In
panels A and A′ the dot lies inside the vibrating part of the tube. The confinement is obtained
by a side gate (A) or by impurities located on the tube (A′), whereas the rest of the tube is
electrically absorbed into the leads due to the strong tube–lead hybridization (extended lead
configuration). In panel C, the dot coincides with the entire tube length due to the weak
hybridization between the SWCNT and the metallic leads and fully contains the vibrating
fraction of the tube. Finally, a somehow mixed scenario is illustrated in panel B.

The electron–vibron coupling Hamiltonian reads

Ĥ ev =

∫
dEr ρ̂(Er)V̂ (Er), (12)

where ρ̂(Er)=
∑

σ 9̂
†
σ (Er)9̂σ (Er) is the electron density and V̂ (Er)= g∂x û(x) is the deformation

potential for the stretching vibron mode. The coupling constant g is estimated to be [3]
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g ≈ 20–30 eV. The displacement and momentum field operators read [40]

û(x)=

√
h̄

ζvstLv

∑
m>1

sin

[
km

(
x − xv +

Lv

2

)]
1

√
km

(
â†

m + âm

)
,

P̂(x)= i

√
h̄ζvst

Lv

∑
m>1

sin

[
km

(
x − xv +

Lv

2

)]√
km

(
â†

m − âm

)
,

(13)

with km = mπ/Lv the wave number. Here âm (â†
m) are the annihilation (creation) operators

associated with the mth vibron mode obeying the commutation relation [âm, â†
m′] = δm,m′ . Using

the above field operators, we obtain

Ĥ v =

∑
m>1

Em

(
â†

m âm +
1

2

)
, (14)

with Em = mh̄vstπ/Lv ≡ mh̄ω. Similarly, (12), integrated over the radial and azimuthal
coordinates, becomes

Ĥ ev = g
∑
m>1

(
h̄km

ζvstLv

)1/2 (
â†

m + âm

) ∫
d∩v

dx ρ̂1D(x) cos

[
km

(
x − xv +

Lv

2

)]
, (15)

where the integral is calculated over the overlap of the dot and vibron region and the effective
one-dimensional (1D) density operator ρ̂1D(x) reads, in its bosonized form [34],

ρ̂1D(x)=
N̂ c+

Ld
+

2
√
π h̄
∂x φ̂c+(x). (16)

Note that the bosonic field φ̂c+(x) can be expressed in terms of the bosonic creation and
annihilation operators b̂†

c+,n and b̂c+,n as

φ̂c+(x)=

√
h̄gc+

Ld

∑
n>1

sin

[
kn

(
x − xd +

Ld

2

)]
1

√
kn
(b̂†

c+,n + b̂c+,n), (17)

where kn = nπ/Ld and we have imposed open boundary conditions ρ̂(xd − Ld/2)= ρ̂(xd +
Ld/2)= 0. It is useful, for the diagonalization procedure presented in the next subsection,
to introduce the dimensionless position and momentum operators for the nth plasmon mode
{X̂ n, P̂n} and the ones of the mth vibronic mode {x̂m, p̂m}

X̂ n =
b̂c+,n + b̂ †

c+,n
√

2
, x̂m =

âm + â†
m

√
2

,

P̂n =
b̂c+,n − b̂ †

c+,n

i
√

2
, p̂m =

âm − â†
m

i
√

2
,

(18)

which satisfy the canonical commutation relations [X̂ n, P̂n′] = iδnn′ and [x̂m, p̂m′] = iδmm′ . In
terms of these operators the electron–vibron Hamiltonian can be written as

Ĥ ev = I
√

gc+

∑
n,m>1

√
nmKnm(λ, δ)2X̂ n x̂m + I

∑
m>1

√
mLm(λ, δ)

√
2N̂ c+ x̂m, (19)
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where

I = g

√
h̄π

ζvstL2
d

(20)

is the fundamental coupling constant; it acquires the value I = 88µeV for a (10, 10) SWCNT
with Ld = 1µm and assuming g = 30 eV.

The geometric part of the electron–vibron coupling is given by the dimensionless matrix

Knm(λ, δ)=
1

λ

∫ xmax

xmin

dx

{
cos

[
πx

(
n +

m

λ

)
−

mπ

λ

(
δ +

1 − λ

2

)]
+ cos

[
πx

(
n −

m

λ

)
+

mπ

λ

(
δ +

1 − λ

2

)]}
(21)

for the plasmon–vibron component and by the vector

Lm(λ, δ)=
1

λ

∫ xmax

xmin

dx cos

[
mπ

λ

(
x − δ−

1 − λ

2

)]
(22)

for the charge–vibron component. The integration limits

xmin = max[0, δ + (1 − λ)/2],

xmax = min[1, δ + (1 + λ)/2]
(23)

ensure that the integral extends only on the overlap regions of the dot and the vibron. As
one appreciates from (19)–(22), for a fixed Ld the electron–vibron Hamiltonian is completely
determined by the relative position of the centres of the dot and the vibron δ = (xv − xd)/Ld,
and the ratio between the length of the vibron and of the dot λ= Lv/Ld.

Importantly, Ĥ ev reveals that the electron–vibron interaction only involves the position
operator x̂m of the m-vibron mode, the position operator X̂ n of the nth charged plasmon
mode and the total electron number N̂ c+. Moreover, the important energy scales involved in
the electron–vibron dynamics are the lowest vibron energy h̄ω, the lowest charged plasmon
energy ε0/gc+ and the fundamental coupling constant I : their values are 0.050 , 8.293 and
0.088 meV, respectively, for a (10,10) SWCNT with Ld = Lv = 1µm and the other parameters
as the ones given in figure 4. Excluding the extreme short vibron regime λ6 1/100 and the
strong screening, we can conclude that h̄ω, I � ε0/gc+, thus implying a clear separation of
the vibron and plasmon energy scales. Albeit these two degrees of freedom are consequently
characterized, for an isolated system, by an essentially independent dynamics, the tunnelling
event can be substantially influenced by the mechanical motion of the nanotube under certain
geometrical conditions, as will be discussed later.

2.3. Plasmon–vibron and charge–vibron couplings

The energy spectrum and the Franck–Condon couplings strongly depend on the geometry of
the junction via the coupling constants Knm and Lm . The detailed analysis of these coupling
constants is thus the natural starting point to understand the presence of geometrical-dependent
trends and selection rules in the tunnelling processes of a suspended SWCNT.

The geometrical parameters space {λ, δ} is divided into four regions by the different
conditions imposed by the integration limits xmin and xmax explicitly given in (23). In figure 2,
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Figure 2. Parameters space of the geometrical configurations of the
electromechanical nanojunction. The relevant dimensionless parameters are the
length ratio λ= Lv/Ld and the relative position of the centres δ = (xv − xd)/Ld.
Four qualitatively different regions are identified in the parameters space and
schematically shown on the right.

we define these regions and give a schematic representation of the corresponding geometrical
configuration.

The function Knm has the following explicit form in the four regions:

K (A)
nm (λ, δ)= −

2m

π(λ2n2 − m2)

[
(−1)n sin

(
mπ

1 − 2δ + λ

2λ

)
+ sin

(
mπ

1 + 2δ− λ

2λ

)]
,

K (B)
nm (λ, δ)= −

2

π(λ2n2 − m2)

[
(−1)nm sin

(
mπ

1−2δ+λ

2λ

)
+λn sin

(
λnπ

1 + 2δ−λ

2λ

)]
,

K (C)
nm (λ, δ)=

2λn

π(λ2n2 − m2)

[
(−1)m sin

(
λnπ

λ+ 2δ + 1

2λ

)
+ sin

(
λnπ

λ− 2δ− 1

2λ

)]
,

K (D)
nm (λ, δ)=

2

π(λ2n2 − m2)

[
(−1)mλn sin

(
λnπ

λ+ 2δ + 1

2λ

)
+ m sin

(
mπ

λ+ 2δ− 1

2λ

)]
.

(24)

Some symmetry relations for the function Knm can be readily obtained from (24):

Knm(λ, δ)= 1/λ Kmn(1/λ,−δ/λ),

Knm(λ, δ)= (−1)n+m Knm(λ,−δ).
(25)

The first equation in (25) quantifies the connection between the behaviour of Knm(λ, δ) at small
and large values of λ: the roles of the vibron and of the plasmon are simply exchanged in
the plasmon–vibron Hamiltonian if we invert the ratio of their lengths. The second equation
in (25) states instead that if we invert the relative position of the vibron and the dot, the
plasmon–vibron Hamiltonian acquires at most a minus sign, depending on the parity of the
vibronic and plasmonic modes. The case considered in [17] corresponds to the point λ= 1,
δ = 0 of the parameters space where the following limit holds:

lim
λ→1

Knm(λ, 0)= δnm, (26)

and each vibronic mode is only coupled to the plasmonic mode of the same order n = m. In
all other regions of the parameters space, the coupling is not diagonal and the dynamics of
each vibronic mode is influenced by all plasmonic modes and vice versa, making the system
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quite intricate. Nevertheless, from a detailed analysis of the K function, one can estimate which
modes are more relevant in the low-energy limit.

The function K has an upper bound K< 2, as can be easily proven from its definition (21)
by considering that the distance between the integration limits is at maximum λ. Thus, Knm

does not diverge for λ→ m/n as one could expect from first sight. Instead, its maximum can
be estimated by calculating the limit λ→ m/n. One obtains

lim
λ→ m

n

Kmn(λ, δ)=


n

m
cos
[π

2
(n − m − 2nδ)

]
, for n < m,

cos
[π

2
(n − m − 2nδ)

]
, for n > m,

(27)

where the first and the second case are calculated in regions A and C, respectively (see figure 2).
The absolute value |Knm| of the coupling exhibits |m − n| + 1 local maxima as a function of the
relative displacement δ, separated by nodes in which the mth vibronic mode is decoupled from
the nth plasmonic one. Note that in the limit λ→ m/n, the wavelength of the mth vibronic
mode coincides with that of the nth plasmonic one, thus giving a physical interpretation to the
resonance. One concludes that each geometrical configuration optimizes the coupling between
specific plasmonic and vibronic modes. Moreover, the coupling between low vibronic modes
and higher plasmonic ones is reached for short vibrons and is more efficient than the coupling
of a low plasmonic mode with higher vibronic ones obtained, instead, for large vibrons.

Another interesting regime can be reached in the small vibron region when the centre of
the vibron lies in the vicinity of the border of the dot. Let us consider for this reason the function
Knm in the region B and with λ� m/n. The following relation holds:

Knm

(
λ,

1

2
+αλ

)
=

2

πm
(−1)n sin

[
mπ

(
1

2
−α

)]
, (28)

where |α|< 1/2. The absolute value |Knm| of the coupling exhibits m local maxima as a function
of α in the region B which are independent of the plasmonic mode n. This specific configuration
has been chosen in [18] to describe a system in which the renormalization of the lowest vibronic
mode due to the coupling to the plasmons produces a strongly inhomogeneous Franck–Condon
coupling in the tunnelling matrix elements to the carbon nanotube. In order to illustrate the
arguments presented so far, we plot in figure 3 the plasmon–vibron couplings K15 and K51 as a
function of λ and δ. Clearly visible are the maxima of the coupling close to λ= m/n and the
fan-shaped structure of the coupling close to the points {0,±1/2}, more visible in the case K15

due to the conditions given above.
The second line of the electron–vibron Hamiltonian (19) describes the charge–vibron

interaction and is proportional to the function Lm defined in (22). Also the coupling Lm is
defined on the parameters space {λ, δ} by different functions in the four different regions already
introduced for Knm:

L (A)m (λ, δ)=
1

mπ

[
sin

(
mπ

1 − 2δ + λ

2λ

)
+ sin

(
mπ

1 + 2δ− λ

2λ

)]
,

L (B)m (λ, δ)=
1

mπ
sin

(
mπ

1 − 2δ + λ

2λ

)
,

L (C)m (λ, δ)= 0,

L (D)m (λ, δ)=
1

mπ
sin

(
mπ

1 + 2δ− λ

2λ

)
.

(29)
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Figure 3. The plasmon–vibron Knm and the charge–vibron Lm coupling
constants are plotted in the geometrical parameters space. Top row: on the left
(right) the coupling between the first (fifth) plasmonic and the fifth (first) vibronic
modes. Bottom row: examples of the charge–vibron coupling Lm are given for
the first (left) and the second (right) vibronic mode. Black solid lines indicate
in all figures the borders of the regions A, B, C and D indicated in figure 2 and
explained in the text.

A symmetry relation can also be derived for this coupling, namely

Lm(λ, δ)= (−1)m Lm(λ,−δ). (30)

The function Lm vanishes identically in the region C , thus implying no charge–vibron coupling
for systems in which the vibron is entirely contained inside the dot. The finite local coupling is
in fact averaged away by the sinusoidal shape of the vibron. The form of Lm in the region B is
readily understood with the parameterization:

Lm

(
λ,±

1

2
+αλ

)
=

1

mπ
sin

[
mπ

(
1

2
−α

)]
(31)

with |α|6 1/2. As shown in figure 3, |Lm| has indeed in the small vibron limit a fan shape with
m maxima of magnitude 1/(mπ) separated by m − 1 nodes. Thus, the charge–vibron coupling
decreases for higher vibron modes and is also very sensitive to the geometry of the system. The
geometry of the system even introduces selection rules: for example, for a system with λ= 0.1
and δ = 1/2, (α = 0) only odd modes ( m = 2a − 1, a ∈ N+) exhibit charge–vibron coupling.
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The maximum charge–vibron coupling for the mode m is reached when |Lm| = 2/(mπ)
and is obtained only for vibrons larger than the dot (A region, λ > 1) and centred with respect
to it (δ = 0). Only even vibronic modes couple to the charge if δ = 0 and |Lm| exhibits m/2
maxima in the positions λ= m/(1 + 2r) where 06 r < m/2 − 1, r ∈ N.

In conclusion, the electron–vibron coupling is very sensitive to the geometry of the
junction, in both its plasmon–vibron and charge–vibron components. In general, for more
symmetric systems (δ ≈ 0) the plasmon–vibron component dominates the short vibron limit
(λ < 1, region C), whereas the large vibron limit (λ > 1, region A) is dominated by the
charge–vibron interaction. Only for a strongly asymmetric system (δ ≈ ±1/2) in the short
vibron limit (λ� m/n) can the two components have the same strength. Moreover, in general,
the strength of the coupling decreases with the vibron mode.

Yet, the position of the nodes of the functions Knm and Lm depends on the vibron and
plasmon mode numbers n and m, generating selection rules that depend sensitively on the
geometry of the system.

3. Diagonalization and spectrum

Because the electron–vibron coupling only involves the total charge operator N̂ c+ and the
plasmon excitations, the part of the system Hamiltonian that is still to be diagonalized is

Ĥ ′

sys =

∑
n>1

n
h̄�

2

(
X̂ 2

n + P̂2
n

)
+
∑
m>1

m
h̄ω

2

(
x̂2

m + p̂2
m

)
+I

√
gc+

∑
n,m>1

√
nmKnm2X̂ n x̂m + I

∑
m

√
mLm

√
2N̂ c+ x̂m,

(32)

where we have introduced the frequencies �= πvF/(gc+Ld) and ω = πvst/Lv. The exact
diagonalization of the Hamiltonian (32) can be achieved in two steps: (i) a set of canonical
transformations eliminates the plasmon–vibron component; (ii) a polaron transformation
eliminates the charge–vibron component. The final result is a collection of shifted
plasmon–vibron oscillators.

The first step in the diagonalization is better understood by setting the plasmon–vibron part
of the Hamiltonian in a quadratic form:

Ĥ ′

sys =


X̂
x̂

P̂
p̂


T

Hpp Hpv 0 0

Hvp Hvv 0 0

0 0 Hpp 0

0 0 0 Hvv




X̂
x̂

P̂
p̂

+ Ĥ cv, (33)

where the components of matrix HM defining the quadratic form are given by:
(
Hpp

)
nn′

=

nh̄�/2 δnn′ , (Hvv)mm′ = mh̄ω/2 δmm′ and
(
Hpv

)
nm

=
(
Hvp

)
mn

= I
√

gc+
√

nmKnm . Moreover, we

have introduced the vector of operators X̂ = [X̂ 1, X̂ 2, . . .]T and analogously for x̂, P̂ and p̂.
Finally, we have defined the charge–vibron Hamiltonian Ĥ cv. The quadratic form in (33) is
simplified via the following set of canonical transformations: the first is the contraction

X̂ ′

n = 1/
√

nh̄� X̂ n, x̂ ′

m = 1/
√

mh̄ω x̂m,

P̂ ′

n =
√

nh̄� P̂n, p̂′

m =
√

mh̄ω p̂m

(34)
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that transforms the momentum block of HM into the matrix 1/2. Note that the commutation
relations between position and momentum operators are conserved for each mode: [X̂ ′

n, P̂ ′

n′] =

iδnn′ and [x̂ ′

n, p̂′

n′] = iδnn′ . Afterwards we perform the rotation

ξ̂ ′

l =

Np∑
n=1

U T
ln X̂ ′

n +
Nv∑

m=1

U T
l Np+m x̂ ′

m,

π̂ ′

l =

Np∑
n=1

U T
ln P̂ ′

n +
Nv∑

m=1

U T
l Np+m p̂′

m

(35)

that diagonalizes the position block of HM written in the primed variables. We have also
introduced the total number of vibron (plasmon) modes Nv (Np). This can be done without loss
of generality due to the presence of physical cut-offs for both the plasmonic and the vibronic
mode numbers. This transformation is physically most important since it generates the position
and momentum operators ξ̂ ′

l and π̂ ′

l which identify Np + Nv mixed plasmon–vibron modes. The
matrix defining the quadratic form reads, in this mixed basis,

HM =

(
1 0
0 1/2

)
, (36)

where ∆ is a diagonal matrix whose diagonal element 1l defines the energy of the
plasmon–vibron mode h̄ωl =

√
21l . This relation becomes clear after the last canonical

transformation, the expansion

ξ̂ l =
√

h̄ωl ξ̂
′

l,

π̂ l = 1/
√

h̄ωl π̂
′

l

(37)

that brings the system Hamiltonian into the form

Ĥ ′

sys =

∑
l

h̄ωl

2
(ξ̂ 2

l + π̂ 2
l )+ Hcv. (38)

The effect of the transformations (34), (35) and (37) on the charge–vibron Hamiltonian Ĥ cv is
readily obtained:

Ĥ cv = I
√

2
∑
lm

mLm

√
ω

ωl
UNp+m, l ξ̂ l N̂ c+. (39)

The presence of Ĥ cv requires a second step in the diagonalization procedure: the polaron

transformation ˆ̃H ′
sys = e−Ŝ Ĥ ′

syse
+Ŝ, where

Ŝ = i
√

2
∑
lm

I

h̄ωl
mLm

√
ω

ωl
UNp+m, l π̂ l N̂ c+, (40)

yielding

ˆ̃H ′
sys =

∑
l

h̄ωl

2
(ξ̂ 2

l + π̂ 2
l )−

∑
l

I 2

h̄ωl

(∑
m

Lm

√
ω

ωl
UNp+m, l

)2

N̂ 2
c+. (41)

Thus, the low-energy spectrum of the suspended SWCNT reads

E EN , Em = E EN +
∑

l

h̄ωl

(
ml +

1

2

)
+
∑

n, j 6=c+

nε0mn, j , (42)
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where EN = [Nc+, Nc−, Ns+, Ns−] is the vector defining the electronic configuration and E EN the
associated energy as can be computed from (9) and (41). The vector Em, instead, contains the
occupation numbers ml of the plasmon–vibron modes and those (mn, j , j 6= c+) of the other
relative charge and spin bosonic modes.

The diagonalization procedure presented here reproduces known results in some limiting
cases. In the totally symmetric case (δ = 0, λ= 1) where the length and centre of the dot and
vibrons coincide, only the coupling between plasmons and vibrons with the same number of
modes is allowed (Knm = δnm). One finds that the matrix to be diagonalized by the rotation (35)
is

n2

(
h̄2�2

2 I h̄
√
ω�gc+

I h̄
√
ω�gc+

h̄2ω2

2

)
, (43)

yielding the spectrum [17]

h̄ωl =

√
21l = nh̄

√√√√�2 +ω2

2
±

√(
�2 −ω2

2

)2

+
4gc+ I 2ω�

h̄2 , (44)

where l = {n, α} and α = ±. For this symmetric configuration, there is also no polaron shift
since the charge–vibron coupling vanishes identically (Lm = 0). Also the case considered in [18]
of a single vibron mode is reproduced by our general theory. Under the only assumption that
ω��, one obtains

ω1 = ω

√√√√1 −
4I 2gc+

h̄2ω�

∞∑
n=1

K 2
n1, (45)

which is always real for the parameters considered in the present paper. Moreover, the case of
short asymmetric vibrons (λ� 1, δ = 1/2) is particularly interesting since by means of (28)
one also obtains that the lowest plasmons (n � 1/λ) equally contribute to soften the frequency
of the lowest vibron mode.

In the generic case, however, only a numerical evaluation of the spectrum is viable.
In figure 4, we present the relative frequency shift (i.e. (ωm − mω)/mω) for the first (left
panel) and the fifth (right panel) plasmon–vibron mode. The calculation is performed for a
(10, 10) armchair nanotube of Ld = 1µm. The coupling of the vibrons to the plasmons softens
the vibronic modes, yielding a negative shift for every configuration. The renormalization is
stronger and almost constant in the region C, where the coupling between the low vibronic
modes and the plasmonic ones is larger. An estimate of the maximum renormalization can be
obtained by its direct calculation in the symmetric point (λ= 1, δ = 0):

ωm − mω

mω
≈ −

2gc+ I 2

h̄2ω�
, (46)

where we made the expansion of (44) in powers of ω/� and I/(h̄�). Interestingly, as far as
the bare vibron frequency ω and the fundamental electron–vibron coupling constant I/h̄ are
both much smaller than the bare plasmon frequency �, the relative frequency normalization,
if present, is independent of the mode number m. It is also clear that, in the absence of strong
screening, (gc+ ≈ 0.2) the relative normalization is very moderate and does not exceed 1%,
independently of the geometry of the junction.
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Figure 4. Relative normalization of the first (left) and the fifth (right) vibron
mode due to the plasmon–vibron coupling. Note that the relative normalization
is always negative; it reaches its maximum at the point λ= 1, δ = 0 and is
essentially constant in the entire region C (defined in figure 2). The parameters
used are Ld = 1µm, R = 6.68 Å, vF = 8 × 105 m s−1, vst = 2.4 × 104 m s−1,
M = 3.8 × 10−7 kg m−2, g = 30 eV and gc+ = 0.2.

4. Tunnelling amplitudes and Franck–Condon couplings

So far we have studied the isolated nanotube. Our interest, however, is in the transport of
electrons through an SWCNT in tunnelling coupling with possibly extended source and drain
leads (see figure 1). The tunnelling Hamiltonian Ĥ T is given by

Ĥ T =

∑
α=s,d

∑
σ

∫
dEr
[
Tα (Er) 9̂

†

σ (Er) 8̂σα (Er)+ h.c.
]
, (47)

where 9̂
†

σ , see (5), and 8̂†
σα (Er)=

∑
Eq φ

∗

Eq (Er) ĉ†
Eqσα are electron creation operators in the SWCNT

and in the lead α, respectively, and Tα (Er) describes the transparency of the tunnelling contact α.
The spatial dependence of the transparency Tα (Er) depends on the specific geometrical

configuration of the junction and on the tube–lead hybridization. For the sake of simplicity, we
refer again to the configurations introduced in figure 1. In both the A and A′ cases we expect
Tα (Er) to be strongly localized at the interface between the extended lead and the dot, while in
the case C the tunnelling region extends over the entire fraction of the tube, which is covered
by the leads. For the case B, an intermediate situation is envisaged with an extended tunnelling
region (weak hybridization) at the source and a localized one at the drain (strong hybridization).

In the weak tunnelling limit, the dynamics of the system can be described as a series of
sequential tunnelling events connecting different many-body eigenstates of the system. For
this reason, a central role is played in the theory by the spectrum that we calculated in the
previous section and by the tunnelling amplitudes between the corresponding many-body energy
eigenstates, which is the focus of the present one.

Following [35], the 3D electron annihilator in the quantum dot 9̂σ (Er) can be expressed in
terms of the slow varying 1D operators ψ̂rFσ (x) which, in their bosonized form, read

ψ̂r Fσ (x)= η̂rσ K̂ r Fσ (x)e
iφ̂†

rFσ (x) eiφ̂rFσ (x), (48)
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where η̂rσ is the Klein factor which reduces by one the occupation of the branch rσ , K̂ rFσ (x) is
the operator

K̂ r Fσ (x)=
1

√
2Ld

ei(π/Ld)sgn(F)(r N̂ rσ+1)x , (49)

which essentially adds a phase proportional to the occupation number of the branch rσ , and
φ̂r Fσ (x) is the bosonic field associated with the bosonic excitation of the SWCNT. It is useful
to express ψ̂r Fσ (x) in terms of the position and momentum operators of the plasmonic modes
X̂ n, and P̂n. After a lengthy but straightforward calculation, one obtains

ψ̂r Fσ (x)∝ η̂rσ K̂ r Fσ (x)
∏
n>1

e+iPn(x)X̂n−iXn(x)P̂n, (50)

where we have introduced the functions

Xn(x)=

√
2

ngc+
cos

[
nπ

Ld

(
x − xd +

Ld

2

)]
,

Pn(x)=

√
2gc+

n
sgn(Fr) sin

[
nπ

Ld

(
x − xd +

Ld

2

)] (51)

and the proportionality in (50) is due to the frozen c−, s+ and s− branches. They only contribute
in fact with an overall constant to the tunnelling matrix elements between the low-energy
eigenstates.

An explicit representation of these low-energy eigenstates is readily obtained from (9)
and (41). Due to the already mentioned energy scale separation between on the one side the
vibronic and on the other side the plasmonic and electronic excitations, we can limit ourselves,
without loss of generality, to the case mn, j = 0, j 6= c+ and obtain

| EN , Em〉 = eŜ
| EN , Em〉0, (52)

where

| EN , Em〉0 =

∏
l

(ξ̂ l − iπ̂ l)
ml

√
2ml!

| EN , 0〉0 (53)

with EN = [Nc+, Nc−, Ns+, Ns−] being the vector defining the electronic configuration and Em
representing here the occupation numbers of only the lowest vibron–plasmon modes (with an
excitation energy lower than ε0). The low-energy eigenstates of a metallic suspended SWCNT
are, thus, polaron-shifted plasmon–vibron excitations over its electronic ground state | EN , 0〉0.
We are now ready to evaluate the matrix element

〈 EN , Em|ψ̂r Fσ (x)| EN
′, Em ′

〉 = 0〈 EN , Em|e−Ŝψ̂r Fσ (x)e
+Ŝ

| EN ′, Em ′
〉0. (54)

Since the operator Ŝ defined in (40) commutes with K̂ rFσ :

e−Ŝψ̂r Fσ (x)e
+Ŝ

∝ η̂rσ K̂ r Fσ

∏
l

e+iπl (x)ξ̂ l−iξl (x)π̂ l , (55)
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where the proportionality accounts for the constant terms deriving from the application of the
Baker–Hausdorff theorem and we defined the functions

ξl(x)= −

√
2I

εl

Nv∑
m=1

√
h̄ω

εl
mLmUNp+m, l +

Np∑
n=1

√
2εl

n2gc+h̄�
Unl cos

[
nπ

Ld

(
x − xd +

Ld

2

)]
,

πl(x)=

Np∑
n=1

√
2gc+h̄�

εl
Unl sin

[
nπ

Ld

(
x − xd +

Ld

2

)]
.

(56)

By means of (55) it is now clear that the tunnelling matrix element factorizes into an electronic
component and a product of the Franck–Condon factors, one for each plasmon–vibron mode:

〈 EN , Em|ψ̂rFσ (x)| EN
′, Em ′

〉 ∝ 〈 EN |η̂rσ K̂ rFσ | EN
′
〉

∏
l

F(ml,m ′

l, λl), (57)

where

λl = −
ξl − iπl

√
2

(58)

is the effective coupling between the charge and the plasmon–vibron mode and

F(m,m ′, λ)=

[
θ(m ′

− m)λm′
−m + θ(m − m ′)(−λ∗)m−m′

]
×

√
mmin!

mmax!

mmin∑
i=0

(−|λ|2)i

i!(i + mmax − mmin)!

mmax!

(mmin − i)!

(59)

is the explicit expression for the Franck–Condon factor. Equations (56)–(59) together with (35)
for the definition of the transformation U represent the main analytical result of this paper.
They are a very general expression of the tunnelling matrix elements between the low-energy
eigenstates of a suspended SWCNT in the presence of multiple plasmon and vibron modes.
Special limits of these formulae are already available in the literature [17, 18]. Particularly
interesting to our point of view is the contribution of the geometrical configuration of the
junction, which determines selection rules in the tunnelling processes and in turn the magnitude
of the dimensionless electron–vibron Franck–Condon couplings λl . In figure 5, we present |λl |

for the first (left) and the second (right) plasmon–vibron modes.
The values in the figure correspond to a tunnelling matrix element calculated at the

beginning of the tube (x = xd − Ld/2). By a comparison with the corresponding charge–vibron
coupling constant Lm in the lower panels of figure 3, one can argue that |λm| ∝ |Lm|. This
observation is essentially correct, at least in the A, B and D regions of the parameters space
where the energy renormalization of the vibronic modes is negligible and the same holds for the
mixing introduced in equation (35) between the vibronic and plasmonic modes. Consequently,
we expect that |λl | does not depend on the tunnelling point, at least in the long vibron region
(λ > 1) for any geometrical configuration. This result is illustrated in figure 6 where the
Franck–Condon couplings for the first and second plasmon–vibron modes are plotted as a
function of the dimensionless tunnelling point (ξ = x/Ld) and relative position of the vibron (δ)
for the configuration Lv/Ld = 2. Interestingly, the selection rules derived in the previous section
for Lm directly apply to the Franck–Condon couplings in the long vibron regime: for example,
for a symmetric junction (δ ≈ 0) only even modes can be excited by a tunnelling event, whereas
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Figure 5. The Franck–Condon couplings |λl | as a function of the length ratio
λ= Lv/Ld and relative centre position δ = (xv − xd)/Ld. The couplings for the
first and second vibron–plasmon modes are shown in the left and right panels,
respectively. The parameters are the same as those reported in figure 4. The
couplings are calculated for a tunnelling event at the beginning of the dot.

Figure 6. The Franck–Condon couplings of the first (left) and second (right)
vibron–plasmon mode in the long vibron regime (λ= 2) plotted against the
dimensionless tunnelling point ξ = x/Ld and the relative position δ of the dot
and vibron centres. Dashed lines indicate the borders between the B (top),
A (centre) and D (bottom) regions of the parameters space (see figure 2).

the odd ones will remain in their ground state. Finally, it is also notable that max(|λl |)≈ 1 in
the long vibron regime even in the absence of strong screening (gc+ ≈ 0.2).

A different result characterizes the short vibron limit (λ < 1). In the C region, the
charge–vibron coupling vanishes identically due to symmetry considerations. Even if small,
the vibron–plasmon mixing becomes there the dominant effect. In figure 7, we present
the Franck–Condon coupling of the lowest vibron–plasmon mode for the configuration λ=

Lv/Ld = 0.1. In particular, in the upper left panel we show |λ1| and in the remaining panels
its components: i.e. in the upper right panel the charge–vibron component (the first line of
ξl in (56)), in the lower left panel the plasmon–vibron component of ξl and πl in the lower
right panel. The dashed white lines represent in all panels the borders of the C region, i.e. the
region in which the vibron is completely inside the dot. Outside the C region the charge–vibron
coupling is stronger and λ1 does not depend on the tunnelling point. Inside the C region, instead,
the dominant contribution is given (in the lower left panel) by the plasmon–vibron component
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Figure 7. Position dependence of the Franck–Condon coupling of the first
vibron–plasmon mode in the short vibron regime (λ= 0.1). In the upper left
panel, the full coupling |λ1| is plotted, while in the remaining panels its
different components are plotted: i.e. in the upper right panel the charge–vibron
component (the first line of ξl in (56)), in the lower left panel the plasmon–vibron
component of ξl and πl in the lower right panel. The dashed white lines represent
in all panels the borders of the C region, i.e. the region in which the vibron is
completely inside the dot.

of ξl . The latter follows the position of the vibron and mimics its shape. The last observation is
also confirmed by the lower left panel of figure 8, where the corresponding component of the
Franck–Condon coupling for the fifth mode is plotted. Finally, for higher modes in the short
vibron limit, a position-dependent Franck–Condon coupling is still appreciable also in the B
and D regions (see figure 8).

The relevance of these results for the tunnelling Hamiltonian and the associated tunnelling
rates between the many-body eigenstates depends on their interplay with the spatially dependent
transparency T (Er) introduced at the beginning of this section. In fact, we expect to detect a
position-dependent Franck–Condon factor in the tunnelling rates only for the cases illustrated
in figures 1(A), 1A′ and (B) where the vibron also extends beyond the dot region, but not for the
case in figure 1(C). This observation, together with the results presented in figures 6–8, allows
us to conclude that the position-dependent rates can be observed, among the configurations
considered in this paper, only in the asymmetric short vibron one (λ� 1, δ ≈ ±1/2), i.e.
a configuration of type B (or D), also in agreement with the results presented in [18]. In
a recent publication [41], an alternative setup has been proposed for the direct visualization of
the position-dependent Franck–Condon couplings in which one of the two metallic electrodes
is substituted by the tip of a scanning tunnelling microscope.

New Journal of Physics 14 (2012) 023045 (http://www.njp.org/)

http://www.njp.org/


20

Figure 8. Position dependence of the Franck–Condon coupling of the fifth
vibron–plasmon mode in the short vibron regime (λ= 0.1). In the upper left
panel, the full coupling |λ5| is plotted. As in figure 7 the other panels represent
its different components.

In the absence of electron–vibron coupling, the frequency of the nth stretching mode is an
nth multiple of the frequency ω of the fundamental mode. Hence, naturally, there are several
energetic degenerate vibronic configurations (involving two or more modes) that may contribute
to transport at finite bias. As we just proved, for realistic values of the parameters, the softening
of the stretching modes introduced by the electron–vibron coupling does not really lift these
degeneracies. This fact has profound implications for the transport properties of the system.
Interference effects have been, in fact, predicted even for systems in the Coulomb blockade
regime [28, 31, 32, 42] in the presence of quasi-degenerate states.

Technically, this degeneracy determines the method of choice for the description of the
dynamics of the system. At low biases, such that only the lowest vibronic mode is excited, a
description of the dynamics only in terms of rate equations involving occupation probabilities of
the many-body states of the quantum dots is appropriate. However, at higher bias, when several
vibron modes are excited, a generalized master equation (GME) coupling diagonal (populations)
and off-diagonal (coherences) elements of the quantum dot reduced density matrix should be
used (see, e.g., [28, 32, 42–49]).

The sensitive dependence of the tunnelling matrix elements on the mode number for a given
geometry of the system also suggests the existence of symmetrically coupled slow channels such
as the ones described in [27] and consequently of similar NDC effects in the stability diagrams
of a suspended SWCNT junction.
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5. Conclusions

In this paper, we analysed the spectrum and the effective Franck–Condon couplings of a
suspended SWCNT quantum dot including many vibronic modes as well as different dot–vibron
geometrical configurations. We described the long-wavelength acoustic–vibrons within an
elastic continuum model and the electron–vibron interaction in terms of a deformation potential.
In particular, we studied how the electromechanical properties depend on the relative size λ and
position δ of the vibron with respect to the dot.

Specifically, within the framework of a Tomonaga–Luttinger liquid description of the
SWCNT, we derived an effective low-energy Hamiltonian where the electron–vibron coupling
is separated into a plasmon–vibron and a charge–vibron component proportional to different
coupling constants (Knm and Lm , respectively).

The system was diagonalized via a series of canonical transformations with an intuitive
geometrical interpretation, which reduce the low-energy description of the suspended SWCNT
to a set of displaced plasmon–vibron excitations. Consequently, the tunnelling matrix elements
between the many-body eigenstates of the system are the product of Franck–Condon factors,
one for each plasmon–vibron mode, of which we gave an analytical expression.

The analysis of the coupling constants Knm and Lm and of the Franck–Condon couplings
λl on the entire geometrical parameters space allowed us to identify different regimes.

In the short symmetric vibron regime (λ < 1, δ ≈ 0), the charge–vibron component
vanishes and the Franck–Condon couplings are extremely small (|λm| ≈ 10−3) due to the energy
scale separation between the plasmonic and vibronic modes (�/ω� 1 and h̄�/I � 1) that
hinder the plasmon–vibron mixing. The Franck–Condon coupling is position dependent and is
located around the position of the vibron.

In the long vibron regime (λ� 1), the charge–vibron coupling dominates the scenario
giving substantially larger Franck–Condon couplings (|λm| ≈ 1) and independent of the position
as in the simple Anderson–Holstein model. The Franck–Condon couplings are strongly
dependent on the relative position of the vibron and the dot, leading to selection rules: for
example, only even vibron–plasmon modes can be excited by electron tunnelling in a symmetric
(δ = 0) long vibron junction (see figure 5).

In the asymmetric short vibron regime (λ < 1, δ ≈ ±1/2), the charge–vibron and
plasmon–vibron contributions are of the same order and correspondingly one can distinguish
(at least in the higher modes, see figure 8) the position-dependent contribution due to the
plasmon–vibron mixing superimposed on the uniform polaron shift typical of the charge–vibron
component of the coupling. In the absence of screening (dimensionless electron–electron
interaction strength gc+ = 0.2), however, the absolute value of the Franck–Condon coupling
remains negligibly small compared to the one estimated from the experiments [13–15].
Reasonable values have been obtained in this regime in [18] by assuming a very strong screening
(gc+ ≈ 1) that essentially removes the energy scale separation between the plasmon modes and
the much shorter vibron mode.

Finally, for reasonable values of the nanotube parameters the spectrum of the nanotube
is only slightly modified by the electron–vibron coupling thus preserving the high degeneracy
of the different vibronic configurations. This, in combination with the sensitive dependence
of the tunnelling matrix elements on the mode number and on the geometry of the system,
also suggests the existence of symmetrically coupled slow channels such as the ones described
in [27] and consequently of similar NDC effects in the stability diagrams of a suspended
nanotube junction.
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