79 research outputs found

    Long-term glycine propionyl-l-carnitine supplemention and paradoxical effects on repeated anaerobic sprint performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been demonstrated that acute GPLC supplementation produces enhanced anaerobic work capacity with reduced lactate production in resistance trained males. However, it is not known what effects chronic GPLC supplementation has on anaerobic performances or lactate clearance.</p> <p>Purpose</p> <p>The purpose of this study was to examine the long-term effects of different dosages of GPLC supplementation on repeated high intensity stationary cycle sprint performance.</p> <p>Methods</p> <p>Forty-five resistance trained men participated in a double-blind, controlled research study. All subjects completed two testing sessions, seven days apart, 90 minutes following oral ingestion of either 4.5 grams GPLC or 4.5 grams cellulose (PL), in randomized order. The exercise testing protocol consisted of five 10-second Wingate cycle sprints separated by 1-minute active recovery periods. Following completion of the second test session, the 45 subjects were randomly assigned to receive 1.5 g, 3.0 g, or 4.5 g GPLC per day for a 28 day period. Subjects completed a third test session following the four weeks of GPLC supplementation using the same testing protocol. Values of peak power (PP), mean power (MP) and percent decrement of power (DEC) were determined per bout and standardized relative to body mass. Heart rate (HR) and blood lactate (LAC) were measured prior to, during and following the five sprint bouts.</p> <p>Results</p> <p>There were no significant effects of condition or significant interaction effects detected for PP and MP. However, results indicated that sprint bouts three, four and five produced 2 - 5% lower values of PP and 3 - 7% lower values of MP with GPLC at 3.0 or 4.5 g per day as compared to baseline values. Conversely, 1.5 g GPLC produced 3 - 6% higher values of PP and 2 -5% higher values of MP compared with PL baseline values. Values of DEC were significantly greater (15-20%) greater across the five sprint bouts with 3.0 g or 4.5 g GPLC, but the 1.5 g GPLC supplementation produced DEC values -5%, -3%, +4%, +5%, and +2% different from the baseline PL values. The 1.5 g group displayed a statistically significant 24% reduction in net lactate accumulation per unit power output (p < 0.05).</p> <p>Conclusions</p> <p>The effects of GPLC supplementation on anaerobic work capacity and lactate accumulation appear to be dosage dependent. Four weeks of GPLC supplementation at 3.0 and 4.5 g/day resulted in reduced mean values of power output with greater rates of DEC compared with baseline while 1.5 g/day produced higher mean values of MP and PP with modest increases of DEC. Supplementation of 1.5 g/day also produced a significantly lower rate of lactate accumulation per unit power output compared with 3.0 and 4.5 g/day. In conclusion, GPLC appears to be a useful dietary supplement to enhance anaerobic work capacity and potentially sport performance, but apparently the dosage must be determined specific to the intensity and duration of exercise.</p

    Asymmetric Dimethylarginine, Endothelial Nitric Oxide Bioavailability and Mortality in Sepsis

    Get PDF
    Background: Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxidesynthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelialdysfunction, but the role of ADMA in acute inflammatory states is less well defined.Methods and Results: In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digitalmicrovascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2&ndash;4 dayslater. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baselineplasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45&ndash;103]) than in hospital controls(143 [123&ndash;166], p,0.0001) and correlated with microvascular reactivity (r = 0.34, R2 = 0.12, p = 0.02). Baseline plasma ADMAwas independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile($0.66 mmol/L) = 20.8 [2.2&ndash;195.0], p = 0.008), and was independently correlated with severity of organ failure. Increase inADMA over time correlated with increase in organ failure and decrease in microvascular reactivity.Conclusions: Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potentialmechanism linking increased plasma ADMA with organ failure and death in sepsis

    Citrulline a More Suitable Substrate than Arginine to Restore NO Production and the Microcirculation during Endotoxemia

    Get PDF
    BACKGROUND: Impaired microcirculation during endotoxemia correlates with a disturbed arginine-nitric oxide (NO) metabolism and is associated with deteriorating organ function. Improving the organ perfusion in endotoxemia, as often seen in patients with severe infection or systemic inflammatory response syndrome (SIRS) is, therefore, an important therapeutic target. We hypothesized that supplementation of the arginine precursor citrulline rather than arginine would specifically increase eNOS-induced intracellular NO production and thereby improve the microcirculation during endotoxemia. METHODOLOGY/PRINCIPAL FINDINGS: To study the effects of L-Citrulline and L-Arginine supplementation on jejunal microcirculation, intracellular arginine availability and NO production in a non-lethal prolonged endotoxemia model in mice. C57/Bl6 mice received an 18 hrs intravenous infusion of endotoxin (LPS, 0.4 µg • g bodyweight(-1) • h(-1)), combined with either L-Citrulline (6.25 mg • h-1), L-Arginine (6.25 mg • h(-1)), or L-Alanine (isonitrogenous control; 12.5 mg • h(-1)) during the last 6 hrs. The control group received an 18 hrs sterile saline infusion combined with L-Alanine or L-Citrulline during the last 6 hrs. The microcirculation was evaluated at the end of the infusion period using sidestream dark-field imaging of jejunal villi. Plasma and jejunal tissue amino-acid concentrations were measured by HPLC, NO tissue concentrations by electron-spin resonance spectroscopy and NOS protein concentrations using Western blot. CONCLUSION/SIGNIFICANCE: L-Citrulline supplementation during endotoxemia positively influenced the intestinal microvascular perfusion compared to L-Arginine-supplemented and control endotoxemic mice. L-Citrulline supplementation increased plasma and tissue concentrations of arginine and citrulline, and restored intracellular NO production in the intestine. L-Arginine supplementation did not increase the intracellular arginine availability. Jejunal tissues in the L-Citrulline-supplemented group showed, compared to the endotoxemic and L-Arginine-supplemented endotoxemic group, an increase in degree of phosphorylation of eNOS (Ser 1177) and a decrease in iNOS protein level. In conclusion, L-Citrulline supplementation during endotoxemia and not L-Arginine reduced intestinal microcirculatory dysfunction and increased intracellular NO production, likely via increased intracellular citrulline and arginine availability

    Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whey protein is a potential source of bioactive peptides. Based on findings from <it>in vitro </it>experiments indicating a novel whey derived peptide (NOP-47) increased endothelial nitric oxide synthesis, we tested its effects on vascular function in humans.</p> <p>Methods</p> <p>A randomized, placebo-controlled, crossover study design was used. Healthy men (n = 10) and women (n = 10) (25 ± 5 y, BMI = 24.3 ± 2.3 kg/m<sup>2</sup>) participated in two vascular testing days each preceded by 2 wk of supplementation with a single dose of 5 g/day of a novel whey-derived peptide (NOP-47) or placebo. There was a 2 wk washout period between trials. After 2 wk of supplementation, vascular function in the forearm and circulating oxidative stress and inflammatory related biomarkers were measured serially for 2 h after ingestion of 5 g of NOP-47 or placebo. Macrovascular and microvascular function were assessed using brachial artery flow mediated dilation (FMD) and venous occlusion strain gauge plethysmography.</p> <p>Results</p> <p>Baseline peak FMD was not different for Placebo (7.7%) and NOP-47 (7.8%). Placebo had no effect on FMD at 30, 60, and 90 min post-ingestion (7.5%, 7.2%, and 7.6%, respectively) whereas NOP-47 significantly improved FMD responses at these respective postprandial time points compared to baseline (8.9%, 9.9%, and 9.0%; <it>P </it>< 0.0001 for time × trial interaction). Baseline reactive hyperemia forearm blood flow was not different for placebo (27.2 ± 7.2%/min) and NOP-47 (27.3 ± 7.6%/min). Hyperemia blood flow measured 120 min post-ingestion (27.2 ± 7.8%/min) was unaffected by placebo whereas NOP-47 significantly increased hyperemia compared to baseline (29.9 ± 7.8%/min; <it>P </it>= 0.008 for time × trial interaction). Plasma myeloperoxidase was increased transiently by both NOP-47 and placebo, but there were no changes in markers inflammation. Plasma total nitrites/nitrates significantly decreased over the 2 hr post-ingestion period and were lower at 120 min after placebo (-25%) compared to NOP-47 (-18%).</p> <p>Conclusion</p> <p>These findings indicate that supplementation with a novel whey-derived peptide in healthy individuals improves vascular function.</p

    What is new in uremic toxicity?

    Get PDF
    Uremic syndrome results from a malfunctioning of various organ systems due to the retention of compounds which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. If these compounds are biologically active, they are called uremic toxins. One of the more important toxic effects of such compounds is cardio-vascular damage. A convenient classification based on the physico-chemical characteristics affecting the removal of such compounds by dialysis is: (1) small water-soluble compounds; (2) protein-bound compounds; (3) the larger “middle molecules”. Recent developments include the identification of several newly detected compounds linked to toxicity or the identification of as yet unidentified toxic effects of known compounds: the dinucleotide polyphosphates, structural variants of angiotensin II, interleukin-18, p-cresylsulfate and the guanidines. Toxic effects seem to be typically exerted by molecules which are “difficult to remove by dialysis”. Therefore, dialysis strategies have been adapted by applying membranes with larger pore size (high-flux membranes) and/or convection (on-line hemodiafiltration). The results of recent studies suggest that these strategies have better outcomes, thereby clinically corroborating the importance attributed in bench studies to these “difficult to remove” molecules

    Randomized, controlled clinical trial of the DIALIVE liver dialysis device versus standard of care in patients with acute-on- chronic liver failure

    Get PDF
    Background & Aims Acute-on-chronic liver failure (ACLF) is characterized by severe systemic inflammation, multi-organ failure and high mortality rates. Its treatment is an urgent unmet need. DIALIVE is a novel liver dialysis device that aims to exchange dysfunctional albumin and remove damage- and pathogen-associated molecular patterns. This first-in-man randomized-controlled trial was performed with the primary aim of assessing the safety of DIALIVE in patients with ACLF, with secondary aims of evaluating its clinical effects, device performance and effect on pathophysiologically relevant biomarkers. Methods Thirty-two patients with alcohol-related ACLF were included. Patients were treated with DIALIVE for up to 5 days and end points were assessed at Day 10. Safety was assessed in all patients (n = 32). The secondary aims were assessed in a pre-specified subgroup that had at least three treatment sessions with DIALIVE (n = 30). Results There were no significant differences in 28-day mortality or occurrence of serious adverse events between the groups. Significant reduction in the severity of endotoxemia and improvement in albumin function was observed in the DIALIVE group, which translated into a significant reduction in the CLIF-C (Chronic Liver Failure consortium) organ failure (p = 0.018) and CLIF-C ACLF scores (p = 0.042) at Day 10. Time to resolution of ACLF was significantly faster in DIALIVE group (p = 0.036). Biomarkers of systemic inflammation such as IL-8 (p = 0.006), cell death [cytokeratin-18: M30 (p = 0.005) and M65 (p = 0.029)], endothelial function [asymmetric dimethylarginine (p = 0.002)] and, ligands for Toll-like receptor 4 (p = 0.030) and inflammasome (p = 0.002) improved significantly in the DIALIVE group. Conclusions These data indicate that DIALIVE appears to be safe and impacts positively on prognostic scores and pathophysiologically relevant biomarkers in patients with ACLF. Larger, adequately powered studies are warranted to further confirm its safety and efficacy. Impact and implications This is the first-in-man clinical trial which tested DIALIVE, a novel liver dialysis device for the treatment of cirrhosis and acute-on-chronic liver failure, a condition associated with severe inflammation, organ failures and a high risk of death. The study met the primary endpoint, confirming the safety of the DIALIVE system. Additionally, DIALIVE reduced inflammation and improved clinical parameters. However, it did not reduce mortality in this small study and further larger clinical trials are required to re-confirm its safety and to evaluate efficacy. Clinical trial number NCT03065699

    Admission levels of asymmetric and symmetric dimethylarginine predict long-term outcome in patients with community-acquired pneumonia

    Full text link
    During infection, there is an activation of the L-arginine-nitric-oxide pathway, with a shift from nitric oxide synthesis to a degradation of L-arginine to its metabolites, asymmetric and symmetric dimethylarginine (ADMA and SDMA). However, the prognostic implications for short-term or long-term survival remains unclear. We investigated the association of L-arginine, ADMA, and SDMA with adverse clinical outcomes in a well-defined cohort of patients with community-acquired pneumonia (CAP).; We measured L-arginine, ADMA, and SDMA in 268 CAP patients from a Swiss multicenter trial by mass spectrometry and used Cox regression models to investigate associations between blood marker levels and disease severity as well as mortality over a period of 6 years.; Six-year mortality was 44.8%. Admission levels of ADMA and SDMA (μmol/L) were correlated with CAP severity as assessed by the pneumonia severity index (r = 0.32, p &lt; 0.001 and r = 0.56, p &lt; 0.001 for ADMA and SDMA, respectively) and higher in 6-year non-survivors versus survivors (median 0.62 vs. 0.48; p &lt; 0.001 and 1.01 vs. 0.85; p &lt; 0.001 for ADMA and SDMA, respectively). Both ADMA and SDMA were significantly associated with long-term mortality (hazard ratios [HR] 4.44 [95% confidence intervals (CI) 1.84 to 10.74] and 2.81 [95% CI 1.45 to 5.48], respectively). The effects were no longer significant after multivariate adjustment for age and comorbidities. No association of L-arginine with severity and outcome was found.; Both ADMA and SDMA show a severity-dependent increase in patients with CAP and are strongly associated with mortality. This association is mainly explained by age and comorbidities.; ISRCTN95122877 . Registered 31 July 2006
    corecore