5,861 research outputs found

    Growth and Diversification of Doctoral Education in the United Kingdom

    Get PDF
    The chapter analyses the growth in numbers of doctoral students and doctoral degrees awarded in the United Kingdom in recent years and develops two arguments related to this growth. First, doctoral education and training no longer serve almost exclusively the reproduction of the academic profession but provide a highly qualified workforce for the knowledge-intensive sectors of society. Second, due to the growth in the numbers, motives and purposes for obtaining a doctoral degree have diversified leading to the development of new routes towards a doctorate and an expansion in the types of doctoral degree. The United Kingdom is probably the European country with the highest degree of diversity in terms of doctoral degree types, and the most important ones are briefly described in the chapter. This second part will also include a brief discussion of nonacademic labour markets for doctoral degree holders. A third part of the chapter will look at the extended policy field into which doctoral education and training have increasingly been embedded in recent years. Given the fact that doctoral degree holders are a valuable resource (e.g. in human capital terms) for various economic sectors of the knowledge society, their education and training is no longer considered to be exclusively an academic affair. Instead, it is increasingly managed at institutional level and guided by policy processes at national and – at least in Europe – at supranational level. The fourth and final part of the chapter will discuss the question of the growing divergence or growing convergence in doctoral education and training. It is assumed that, despite the growing diversity of pathways and doctoral degree types, there is also some convergence at play – at least at the European level – in so far as quality assurance, definitions of skills and qualifications as well as procedures for the examination and award of degrees are increasingly subject to standards, rules and regulations defined by the European network of quality assurance agencies. It remains to be seen whether the exit of the United Kingdom from the European Union will have an impact on, or even reverse, this trend

    Origin and dynamics of vortex rings in drop splashing

    Get PDF
    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.111314Ysciescopu

    Effective action of three-dimensional extended supersymmetric matter on gauge superfield background

    Full text link
    We study the low-energy effective actions for gauge superfields induced by quantum N=2 and N=4 supersymmetric matter fields in three-dimensional Minkowski space. Analyzing the superconformal invariants in the N=2 superspace we propose a general form of the N=2 gauge invariant and superconformal effective action. The leading terms in this action are fixed by the symmetry up to the coefficients while the higher order terms with respect to the Maxwell field strength are found up to one arbitrary function of quasi-primary N=2 superfields constructed from the superfield strength and its covariant spinor derivatives. Then we find this function and the coefficients by direct quantum computations in the N=2 superspace. The effective action of N=4 gauge multiplet is obtained by generalizing the N=2 effective action.Comment: 1+27 pages; v2: minor corrections, references adde

    Off-shell superconformal nonlinear sigma-models in three dimensions

    Full text link
    We develop superspace techniques to construct general off-shell N=1,2,3,4 superconformal sigma-models in three space-time dimensions. The most general N=3 and N=4 superconformal sigma-models are constructed in terms of N=2 chiral superfields. Several superspace proofs of the folklore statement that N=3 supersymmetry implies N=4 are presented both in the on-shell and off-shell settings. We also elaborate on (super)twistor realisations for (super)manifolds on which the three-dimensional N-extended superconformal groups act transitively and which include Minkowski space as a subspace.Comment: 67 pages; V2: typos corrected, one reference added, version to appear on JHE

    Fractal Profit Landscape of the Stock Market

    Get PDF
    We investigate the structure of the profit landscape obtained from the most basic, fluctuation based, trading strategy applied for the daily stock price data. The strategy is parameterized by only two variables, p and q. Stocks are sold and bought if the log return is bigger than p and less than -q, respectively. Repetition of this simple strategy for a long time gives the profit defined in the underlying two-dimensional parameter space of p and q. It is revealed that the local maxima in the profit landscape are spread in the form of a fractal structure. The fractal structure implies that successful strategies are not localized to any region of the profit landscape and are neither spaced evenly throughout the profit landscape, which makes the optimization notoriously hard and hypersensitive for partial or limited information. The concrete implication of this property is demonstrated by showing that optimization of one stock for future values or other stocks renders worse profit than a strategy that ignores fluctuations, i.e., a long-term buy-and-hold strategy.Comment: 12 pages, 4 figure

    Strong and Tunable Nonlinear Optomechanical Coupling in a Low-Loss System

    Full text link
    A major goal in optomechanics is to observe and control quantum behavior in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom; however, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane allow us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic, or quartic in the membrane's displacement, and a cavity finesse that is linear in (or independent of) the membrane's displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range in situ; in particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane's mechanical energy.Comment: 12 pages, 4 figures, 1 tabl

    External sources of clean technology: evidence from the clean development mechanism

    Get PDF
    New technology is fundamental to sustainable development. However, inventors from industrialized countries often refuse technology transfer because they worry about reverse-engineering. When can clean technology transfer succeed? We develop a formal model of the political economy of North–South technology transfer. According to the model, technology transfer is possible if (1) the technology in focus has limited global commercial potential or (2) the host developing country does not have the capacity to absorb new technologies for commercial use. If both conditions fail, inventors from industrialized countries worry about the adverse competitiveness effects of reverse-engineering, so technology transfer fails. Data analysis of technology transfer in 4,894 projects implemented under the Kyoto Protocol’s Clean Development Mechanism during the 2004–2010 period provides evidence in support of the model

    Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    Get PDF
    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesize in the opposite direction. By extending RNA primers, the lagging-strand polymerase restarts at short intervals and produces Okazaki fragments. At least in prokaryotic systems, this directionality problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. Here we use single-molecule techniques to visualize, in real time, the formation and release of replication loops by individual replisomes of bacteriophage T7 supporting coordinated DNA replication. Analysis of the distributions of loop sizes and lag times between loops reveals that initiation of primer synthesis and the completion of an Okazaki fragment each serve as a trigger for loop release. The presence of two triggers may represent a fail-safe mechanism ensuring the timely reset of the replisome after the synthesis of every Okazaki fragment.

    Dark matter direct detection from new interactions in models with spin-two mediators

    Get PDF
    We consider models where a massive spin-two resonance acts as the mediator between Dark Matter (DM) and the SM particles through the energy-momentum tensor. We examine the effective theory for fermion, vector and scalar DM generated in these models and find novel types of DM-SM interaction never considered before. We identify the effective interactions between DM and the SM quarks when the mediator is integrated out, and match them to the gravitational form factors relevant for spin-independent DM-nucleon scattering. We also discuss the interplay between DM relic density conditions, direct detection bounds and collider searches for the spin-two mediator
    corecore