111 research outputs found

    Factors affecting treatment-seeking for febrile illness in a malaria endemic block in Boudh district, Orissa, India: policy implications for malaria control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orissa state in eastern India accounts for the highest malaria burden to the nation. However, evidences are limited on its treatment-seeking behaviour in the state. We assessed the treatment-seeking behaviour towards febrile illness in a malaria endemic district in Orissa.</p> <p>Methods</p> <p>A cross-sectional community-based survey was carried out during the high malaria transmission season of 2006 in Boudh district. Respondents (n = 300) who had fever with chills within two weeks prior to the day of data collection were selected through a multi-stage sampling and interviewed with a pre-tested and structured interview schedule. Malaria treatment providers (n = 23) were interviewed in the district to gather their insights on factors associated with prompt and effective treatment through a semi-structured and open-ended interview guideline.</p> <p>Results</p> <p>Majority of respondents (n = 281) sought some sort of treatment e.g. government health facility (35.7%), less qualified providers (31.3%), and community level health workers and volunteers (24.3%). The single most common reason (66.9%) for choosing a provider was proximity. Over a half (55.7%) sought treatment from appropriate providers within 48 hours of onset of symptoms. Respondents under five years (OR 2.00, 95% CI 0.84-4.80, <it>P </it>= 0.012), belonging to scheduled tribe community (OR 2.13, 95% CI 1.11-4.07, <it>P </it>= 0.022) and visiting a provider more than five kilometers (OR 2.04, 95% CI 1.09-3.83, <it>P </it>= 0.026) were more likely to have delayed or inappropriate treatment. Interviews with the providers indicated that patients' lack of trust in community volunteers providing treatment led to inappropriate treatment-seeking from the less qualified providers. The reasons for the lack of trust included drug side effects, suspicions about drug quality, stock-outs of drugs and inappropriate attitude of the provider.</p> <p>Conclusion</p> <p>Large-scale involvement of less qualified providers is suggested in the malaria control programme as volunteers after appropriate capacity development since the community has more trust in them. This should be supported by uninterrupted supply of drugs to the community volunteers, and involvement of the community-based organizations and volunteers in the planning, implementation, and monitoring of malaria control services. There is also a need for continuous and rigorous impact evaluations of the program to make necessary modifications, scale up and to prevent drug resistance.</p

    Human Herpesvirus 8 Interferon Regulatory Factor-Mediated BH3-Only Protein Inhibition via Bid BH3-B Mimicry

    Get PDF
    Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of host cells. For HHV-8, viral interferon regulatory factor-1 (vIRF-1) contributes to this process in part via inhibitory interactions with BH3-only protein (BOP) Bim, recently identified as an interaction partner of vIRF-1. Here we recognize that the Bim-binding domain (BBD) of vIRF-1 resembles a region (BH3-B) of Bid, another BOP, which interacts intramolecularly with the functional BH3 domain of Bid to inhibit it pro-apoptotic activity. Indeed, vIRF-1 was found to target Bid in addition to Bim and to interact, via its BBD region, with the BH3 domain of each. In functional assays, BBD could substitute for BH3-B in the context of Bid, to suppress Bid-induced apoptosis in a BH3-binding-dependent manner, and vIRF-1 was able to protect transfected cells from apoptosis induced by Bid. While vIRF-1 can mediate nuclear sequestration of Bim, this was not the case for Bid, and inhibition of Bid and Bim by vIRF-1 could occur independently of nuclear localization of the viral protein. Consistent with this finding, direct BBD-dependent inactivation by vIRF-1 of Bid-induced mitochondrial permeabilization was demonstrable in vitro and isolated BBD sequences were also active in this assay. In addition to Bim and Bid BH3 domains, BH3s of BOPs Bik, Bmf, Hrk, and Noxa also were found to bind BBD, while those of both pro- and anti-apoptotic multi-BH domain Bcl-2 proteins were not. Finally, the significance of Bid to virus replication was demonstrated via Bid-depletion in HHV-8 infected cells, which enhanced virus production. Together, our data demonstrate and characterize BH3 targeting and associated inhibition of BOP pro-apoptotic activity by vIRF-1 via Bid BH3-B mimicry, identifying a novel mechanism of viral evasion from host cell defenses

    Regulation of immunity during visceral Leishmania infection

    Get PDF
    Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program

    Nicotinic receptors

    Get PDF
    Regulation of normal or abnormal behaviour is critically controlled by the central serotonergic systems. Recent evidence has suggested that serotonin (5-HT) neurotransmission dysfunction contributes to a variety of pathological conditions, including depression, anxiety, schizophrenia and Parkinson’s disorders. There is also a great amount of evidence indicating that 5-HT signalling may affect the reinforcing properties of drugs of abuse by the interaction and modulation of dopamine (DA) function. This chapter is focused on one of the more addictive drugs, nicotine. It is widely recognised that the effects of nicotine are strongly associated with the stimulatory action it exhibits on mesolimbic DAergic function. We outline the role of 5-HT and its plethora of receptors, focusing on 5-HT2 subtypes with relation to their involvement in the neurobiology of nicotine addiction. We also explore the novel pharmacological approaches using 5-HT agents for the treatment of nicotine dependence. Compelling evidence shows that 5-HT2C receptor agonists may be possible therapeutic targets for smoking cessation, although further investigation is required.peer-reviewe

    LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same

    Get PDF
    Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson's disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places

    Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP

    Full text link
    corecore