1,241 research outputs found

    The J-triplet Cooper pairing with magnetic dipolar interactions

    Get PDF
    Recently, cold atomic Fermi gases with the large magnetic dipolar interaction have been laser cooled down to quantum degeneracy. Different from electric-dipoles which are classic vectors, atomic magnetic dipoles are quantum-mechanical matrix operators proportional to the hyperfine-spin of atoms, thus provide rich opportunities to investigate exotic many-body physics. Furthermore, unlike anisotropic electric dipolar gases, unpolarized magnetic dipolar systems are isotropic under simultaneous spin-orbit rotation. These features give rise to a robust mechanism for a novel pairing symmetry: orbital p-wave (L=1) spin triplet (S=1) pairing with total angular momentum of the Cooper pair J=1. This pairing is markedly different from both the 3^3He-B phase in which J=0 and the 3^3He-AA phase in which JJ is not conserved. It is also different from the p-wave pairing in the single-component electric dipolar systems in which the spin degree of freedom is frozen

    Zonal image analysis of tumour vascular perfusion, hypoxia, and necrosis

    Get PDF
    A number of laboratories are utilising both hypoxia and perfusion markers to spatially quantify tumour oxygenation and vascular distributions, and scientists are increasingly turning to automated image analysis methods to quantify such interrelationships. In these studies, the presence of regions of necrosis in the immunohistochemical sections remains a potentially significant source of error. In the present work, frozen MCa-4 mammary tumour sections were used to obtain a series of corresponding image montages. Total vessels were identified using CD31 staining, perfused vessels by DiOC7 staining, hypoxia by EF5/Cy3 uptake, and necrosis by haematoxylin and eosin staining. Our goal was to utilise image analysis techniques to spatially quantitate hypoxic marker binding as a function of distance from the nearest blood vessel. Several refinements to previous imaging methods are described: (1) hypoxia marker images are quantified in terms of their intensity levels, thus providing an analysis of the gradients in hypoxia with increasing distances from blood vessels, (2) zonal imaging masks are derived, which permit spatial sampling of images at precisely defined distances from blood vessels, as well as the omission of necrotic artifacts, (3) thresholding techniques are applied to omit holes in the tissue sections, and (4) distance mapping is utilised to define vascular spacing

    Automated Defect Detection For Masonry Arch Bridges

    Get PDF
    The condition of masonry arch bridges is predominantly monitored with manual visual inspection. This process has been found to be subjective, relying on an inspection engineer’s interpretation of the condition of the structure. This paper initially presents a workflow that has been developed that can be used by a future automated bridge monitoring system to determine underlying faults in a bridge and suggest appropriate remedial action based on a set of detectable symptoms. This workflow has been used to identify the main classes of defects that an automated visual detection system for masonry should be capable of detecting. Subsequently, a convolutional neural network is used to classify these identified defect classes from images of masonry. As the mortar joints in the masonry are more distinctive than the defects being sought, their effect on the performance of an automated defect classifier is investigated. Compared to classifying all the regions of the masonry with a single classifier, it is found that where the mortar and brick regions have been classified separately, defect and defect free areas of the masonry have been predicted both with more confidence and with better accuracy

    Relation of gallbladder function and Helicobacter pylori infection to gastric mucosa inflammation in patients with symptomatic cholecystolithiasis

    Get PDF
    Background. Inflammatory alterations of the gastric mucosa are commonly caused by Helicobacter pylori (Hp) infection in patients with symptomatic gallstone disease. However, the additional pathogenetic role of an impaired gallbladder function leading to an increased alkaline duodenogastric reflux is controversially discussed. Aim:To investigate the relation of gallbladder function and Hp infection to gastric mucosa inflammation in patients with symptomatic gallstones prior to cholecystectomy. Patients: Seventy-three patients with symptomatic gallstones were studied by endoscopy and Hp testing. Methods: Gastritis classification was performed according to the updated Sydney System and gallbladder function was determined by total lipid concentration of gallbladder bile collected during mainly laparoscopic cholecystectomy. Results: Fifteen patients revealed no, 39 patients mild, and 19 moderate to marked gastritis. No significant differences for bile salts, phospholipids, cholesterol, or total lipids in gallbladder bile were found between these three groups of patients. However, while only 1 out of 54 (< 2%) patients with mild or no gastritis was found histologically positive for Hp, this infection could be detected in 14 (74%) out of 19 patients with moderate to marked gastritis. Conclusion: Moderate to marked gastric mucosa inflammation in gallstone patients is mainly caused by Hp infection, whereas gallbladder function is not related to the degree of gastritis. Thus, an increased alkaline duodenogastric reflux in gallstone patients seems to be of limited pathophysiological relevance. Copyright (c) 2006 S. Karger AG, Basel

    The effect of watchful waiting compared to immediate test ordering instructions on general practitioners' blood test ordering behaviour for patients with unexplained complaints; a randomized clinical trial (ISRCTN55755886)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immediate blood testing for patients presenting with unexplained complaints in family practice is superfluous from a diagnostic point of view. However, many general pracitioners (GPs) order tests immediately. Watchful waiting reduces the number of patients to be tested and the number of false-positive results. The objectives of this study are: to determine the feasibility of watchful waiting compared to immediate test ordering; to determine if a special quality improvement strategy can improve this feasibility; and to determine if watchful waiting leads to testing at a later time.</p> <p>Methods</p> <p>The study is a cluster-randomized clinical trial with three groups, on blood test ordering strategies in patients with unexplained complaints. GPs in group one were instructed to order tests immediately and GPs in group two to apply a watchful waiting approach. GPs in group three received the same instruction as group two, but they were supported by a systematically designed quality improvement strategy. A total of 498 patients with unexplained complaints from 63 practices of Dutch GPs participated. We measured: the percentage of patients for whom tests were ordered and number of tests ordered at the first consultation; performance on the strategy's performance objectives (i.e., ordering fewer tests and specific communication skills); the number of tests ordered after four weeks; and GP and patient characteristics.</p> <p>Results</p> <p>Immediate test ordering proved feasible in 92% of the patients; watchful waiting in 86% and 84%, respectively, for groups two and three. The two watchful waiting groups did not differ significantly in the achievement of any of the performance objectives. Of the patients who returned after four weeks, none from group one and six from the two watchful waiting groups had tests ordered for them.</p> <p>Conclusions</p> <p>Watchful waiting is a feasible approach. It does not lead to testing immediately afterwards. Furthermore, watchful waiting was not improved by the quality improvement strategy.</p> <p>Trial registration</p> <p>Clinical trial registration: <a href="http://www.controlled-trials.com/ISRCTN55755886">ISRCTN55755886</a></p

    Physiology of Escherichia coli at high osmolarity and its use in industrial ethanol production

    Get PDF
    Biofuels are becoming increasingly important in the light of climate change, increasing energy demands and higher fuel prices. Their production must be carefully balanced against the production of foods and use of fresh water, both of which are consumed by crop based biofuels such as corn ethanol. One proposed solution is to instead use waste materials such as plant matter including wood offcuts and plant trimmings. This waste can be turned into syngas (a mix of CO and H₂) and converted to ethanol using microorganisms. Production of ethanol using microorganisms however, is complicated as the ethanol produced by the cells becomes toxic at higher concentrations, inhibiting their growth and further production. The usual method of keeping the toxicity down to allow further production is to continuously distil ethanol off at low concentrations and consequently, a high cost. Since the mechanisms of ethanol damage to microbes are similar to those that occur during osmotic challenge: damage to the membrane, cytoplasmic dehydration, and protein unfolding, I hypothesized that we can use knowledge of osmoregulatory mechanisms to increase the resistance of cells to ethanol damage and decrease distillation costs. While working under this hypothesis I had to address some of the challenges one faces when understanding the physiology and growth of microbes, and for the purpose I have developed a number of useful techniques; a method for calibrating optical densities to cell number, a neural network for identifying cells and determining their concentrations via microscope imaging and a simple particle diffusion simulation for correcting errors due to confinement of particles within cells. In addition, I have produced a simplified model of industrial production to help evaluate economic impacts that changes to the growth of microbes and the plant process may have. To study any useful links between osmolarity and ethanol resistance, I chose to use Escherichia coli as the model organism due to the large amount of data available on its osmoregulatory mechanisms. It has been long known that when bacteria do grow at high but not lethal osmolarity, they grow at a reduced rate which, even if it increases the ethanol resistance, may have a detrimental effect on the desired production rates. So therefore, in addition to testing the ethanol tolerance of the bacteria under different osmotic conditions, and as a second focus of this project, I have tried to understand why the reduction in growth rates occurs, with the hope of mitigating this effect. This will offer a better understanding of osmotic growth and provide useful insights for industrial bio-production. To this end, I have tried to discern some of the possible reasons for this slower growth by measuring various cell physiological parameters such as batch-culture yield, cytoplasmic diffusion and proteome allocation using my newly developed techniques. I have found a reduction in the cell yield with increasing osmolarity of 50% with an increase of 1Osm of osmotic agent, a slight decrease in cytoplasmic diffusion and a slight decrease in RNA content at high osmolarity. I have also proposed a coarse-grained model of proteome partitioning to help integrate these results and explain growth at high osmolarity. It is still to be determined if, as a whole, the changes observed explain fully the reduction in growth. When it comes to ethanol resistance, and contrary to my hypothesis, I found that increasing the osmolarity of the medium with sucrose or NaCl reduced the ethanol resistance. However, I found that the proW gene provides significant ethanol resistance, indicating glycine betaine, or another substrate for this transporter, is highly useful as a protectant. And this transporter is a potential candidate for overexpression. A reduction in growth temperature also provides significant solvent tolerance at the expense of a reduction in growth rate and hence production.Restricted Acces

    Quantification of tumour vasculature and hypoxia by immunohistochemical staining and HbO2 saturation measurements

    Get PDF
    Despite the possibility that tumour hypoxia may limit radiotherapeutic response, the underlying mechanisms remain poorly understood. A new methodology has been developed in which information from several sophisticated techniques is combined and analysed at a microregional level. First, tumour oxygen availability is spatially defined by measuring intravascular blood oxygen saturations (HbO2) cryospectrophotometrically in frozen tumour blocks. Second, hypoxic development is quantified in adjacent sections using immunohistochemical detection of a fluorescently conjugated monoclonal antibody (ELK3-51) to a nitroheterocyclic hypoxia marker (EF5), thereby providing information relating to both the oxygen consumption rates and the effective oxygen diffusion distances. Third, a combination of fluorescent (Hoechst 33342 or DiOC7(3)) and immunohistological (PECAM-1/CD31) stains is used to define the anatomical vascular densities and the fraction of blood vessels containing flow. Using a computer-interfaced microscope stage, image analysis software and a 3-CCD colour video camera, multiple images are digitized, combined to form a photo-montage and revisited after each of the three staining protocols. By applying image registration techniques, the spatial distribution of HbO2 saturations is matched to corresponding hypoxic marker intensities in adjacent sections. This permits vascular configuration to be related to oxygen availability and allows the hypoxic marker intensities to be quantitated in situ. © 1999 Cancer Research Campaig

    Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas

    Get PDF
    Bio-catalytic processes for sustainable production of chemicals and fuels receive increased attention within the concept of circular economy. Strategies to improve these production processes include genetic engineering of bio-catalysts or process technological optimization. Alternatively, synthetic microbial co-cultures can be used to enhance production of chemicals of interest. It remains often unclear however how microbe to microbe interactions affect the overall production process and how this can be further exploited for application. In the present study we explored the microbial interaction in a synthetic co-culture of Clostridium autoethanogenum and Clostridium kluyveri, producing chain elongated products from carbon monoxide. Monocultures of C. autoethanogenum converted CO to acetate and traces of ethanol, while during co-cultivation with C. kluyveri, it shifted its metabolism significantly towards solventogenesis. In C. autoethanogenum, expression of the genes involved in the central carbon- and energy-metabolism remained unchanged during co-cultivation compared to monoculture condition. Therefore the shift in the metabolic flux of C. autoethanogenum appears to be regulated by thermodynamics, and results from the continuous removal of ethanol by C. kluyveri. This trait could be further exploited, driving the metabolism of C. autoethanogenum to solely ethanol formation during co-cultivation, resulting in a high yield of chain elongated products from CO-derived electrons. This research highlights the important role of thermodynamic interactions in (synthetic) mixed microbial communities and shows that this can be exploited to promote desired conversions.The research leading to these results has received funding from the Netherlands Ministry of Education, Culture and Science and from the Netherlands Science Foundation (NWO) under the Gravitation Grant nr. 024.002.002 and Programme ‘Closed Cycles’ with Project nr. ALWGK.2016.029.info:eu-repo/semantics/publishedVersio

    Juvenile obesity and its association with utilisation and costs of pharmaceuticals - results from the KiGGS study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>According to a national reference, 15% of German children and adolescents are overweight (including obese) and 6.3% are obese. An earlier study analysed the impact of childhood overweight and obesity on different components of direct medical costs (physician, hospital and therapists). To complement the existing literature for Germany, this study aims to explore the association of body mass index (BMI) with utilisation of pharmaceuticals and related costs in German children and adolescents.</p> <p>Methods</p> <p>Based on data from 14, 836 respondents aged 3-17 years in the German Interview and Examination Survey for Children and Adolescents (KiGGS), drug intake and associated costs were estimated using a bottom-up approach. To investigate the association of BMI with utilisation and costs, univariate analyses and multivariate generalised mixed models were conducted.</p> <p>Results</p> <p>There was no significant difference between BMI groups regarding the probability of drug utilisation. However, the number of pharmaceuticals used was significantly higher (14%) for obese children than for normal weight children. Furthermore, there was a trend for more physician-prescribed medication in obese children and adolescents. Among children with pharmaceutical intake, estimated costs were 24% higher for obese children compared with the normal weight group.</p> <p>Conclusions</p> <p>This is the first study to estimate excess drug costs for obesity based on a representative cross-sectional sample of the child and adolescent population in Germany. The results suggest that obese children should be classified as a priority group for prevention. This study complements the existing literature and provides important information concerning the relevance of childhood obesity as a health problem.</p
    corecore