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Abstract

Biofuels are becoming increasingly important in the light of climate change, incre-
asing energy demands and higher fuel prices. Their production must be carefully
balanced against the production of foods and use of fresh water, both of which
are consumed by crop based biofuels such as corn ethanol. One proposed solution
is to instead use waste materials such as plant matter including wood offcuts and
plant trimmings. This waste can be turned into syngas (a mix of CO and H2) and
converted to ethanol using microorganisms. Production of ethanol using micr-
oorganisms however, is complicated as the ethanol produced by the cells becomes
toxic at higher concentrations, inhibiting their growth and further production.
The usual method of keeping the toxicity down to allow further production is
to continuously distil ethanol off at low concentrations and consequently, a high
cost.

Since the mechanisms of ethanol damage to microbes are similar to those
that occur during osmotic challenge: damage to the membrane, cytoplasmic de-
hydration, and protein unfolding, I hypothesized that we can use knowledge of
osmoregulatory mechanisms to increase the resistance of cells to ethanol damage
and decrease distillation costs. While working under this hypothesis I had to
address some of the challenges one faces when understanding the physiology and
growth of microbes, and for the purpose I have developed a number of useful
techniques; a method for calibrating optical densities to cell number, a neural
network for identifying cells and determining their concentrations via microscope
imaging and a simple particle diffusion simulation for correcting errors due to
confinement of particles within cells. In addition, I have produced a simplified
model of industrial production to help evaluate economic impacts that changes
to the growth of microbes and the plant process may have.

To study any useful links between osmolarity and ethanol resistance, I chose
to use Escherichia coli as the model organism due to the large amount of data
available on its osmoregulatory mechanisms. It has been long known that when
bacteria do grow at high but not lethal osmolarity, they grow at a reduced rate
which, even if it increases the ethanol resistance, may have a detrimental effect
on the desired production rates. So therefore, in addition to testing the ethanol
tolerance of the bacteria under different osmotic conditions, and as a second
focus of this project, I have tried to understand why the reduction in growth
rates occurs, with the hope of mitigating this effect. This will offer a better
understanding of osmotic growth and provide useful insights for industrial bio-
production. To this end, I have tried to discern some of the possible reasons
for this slower growth by measuring various cell physiological parameters such
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as batch-culture yield, cytoplasmic diffusion and proteome allocation using my
newly developed techniques. I have found a reduction in the cell yield with
increasing osmolarity of 50% with an increase of 1Osm of osmotic agent, a slight
decrease in cytoplasmic diffusion and a slight decrease in RNA content at high
osmolarity. I have also proposed a coarse grained model of proteome partitioning
to help integrate these results and explain growth at high osmolarity. It is still
to be determined if, as a whole, the changes observed explain fully the reduction
in growth.

When it comes to ethanol resistance, and contrary to my hypothesis, I found
that increasing the osmolarity of the medium with sucrose or NaCl reduced the
ethanol resistance. However, I found that the proW gene provides significant
ethanol resistance, indicating glycine betaine, or another substrate for this trans-
porter, is highly useful as a protectant. And this transporter is a potential can-
didate for overexpression. A reduction in growth temperature also provides sig-
nificant solvent tolerance at the expense of a reduction in growth rate and hence
production.
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Chapter 1

Introduction

1.1 Motivation and outline
The intended goal of this thesis and project is the enhancement of the et-

hanol tolerance of the Clostridium ljungdahlii strains used by IneosBio for the
production of ethanol from the fermentation of bio-syngas as described in section
1.2. The distillation of low concentrations of ethanol produced by the bacteria
has a significant energy requirement and therefore represents a part of the process
that could be improved to increase the profit margin.

Some of the cell damage caused by ethanol is similar to that caused by con-
ditions of high osmolarity, as detailed in section 1.4. Thus, I hypothesised that
our research could be used to improve the industrial strains. One of the major
consequences of growth at high osmolarity is a significant reduction in cell growth
rate, a process which is still poorly understood, and for an industrial bacterium
this would result in a lower production rate and therefore may mitigate any im-
provement that increased ethanol resistance may confer. As such I also chose
to look into methods of understanding or even improving the growth rate while
conferring enhanced ethanol resistance. Since a majority of our research and
background in osmolarity is from the model organism Escherichia coli I chose to
start with that and plan move to the proprietary strain on site in the IneosBio
facility should I find a promising lead.

My thesis therefore progressed on two fronts that would help inform each ot-
her using E.coli for all the experiments therein. On the first front I would proceed
to define the limits of the E.coli ethanol tolerance under different conditions in-
cluding media composition and osmolarity, followed by the use of osmoregulatory
mutants to help focus my study onto specific, potentially useful components of
the osmoregulatory network in chapter 4.2.

Additionally, I undertook a short project while working under the guidance
of Dr.Ian Little at Ineos P&O in Grangemouth, Scotland. During this project I
constructed an economic model to relate any changes to the bacterial growth and
ethanol tolerance to a theoretical cost saving in order to put any potential im-
provements in a proper context within a bio-gasification and fermentation plant.
The model and its results are described in chapter 4.1.

On the second front, I attempted to improve the understanding of osmo-
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Chapter 1 1.2. Industrial ethanol production

regulation in E.coli by probing the changes to cytoplasmic diffusion, proteome
allocation and cellular yield to identify reasons for reduced growth rate under
hyperosmotic conditions in chapter 5. In brief my hypothesis is based on the
following observations: (i) transporters and enzymes consume energy or carbon
source meaning that there is less for building cells giving a reduction in cell yield
(ii) transport and synthesis of molecules to reverse the osmotic gradient increases
the concentration of components in the cytoplasm, which may limit the movement
(diffusion) of other molecules, (iii) the allocation of ribosomes to synthesising dif-
ferent components of the osmoregulatory network will lower the number available
to synthesis of new ribosomes and cell construction machinery. Based on my ex-
periments attempting to measure these three factors I have made modifications
to a previously developed coarse grained model, which explains growth rate vari-
ation in response to different carbon sources, in chapter 5.4, to try and determine
if the effects observed can explain the reduction in growth rate.

I will first give an introduction of the various components that made up this
project, as well as outlining the background upon which I based my hypothesis to
explain the reduction of growth rate at high osmolarity. Following this I developed
a number of methods, presented in a separate chapter Developed Methods, to
address some of the challenges one faces when understanding physiology and
growth of microbes. These methods are as follows: (i) a method for calibrating
optical densities in chapter 3.2, (ii) a neural network for identifying cells in chapter
3.3 and determining their concentrations via microscope imaging, (iii) a simple
particle diffusion simulation for correcting errors due to confinement of particles
within cells in chapter 3.1.

1.2 Industrial ethanol production
Ethanol is a widely used commodity chemical, with the single largest use

being that as a fuel additive for gasoline products. In some countries it has also
replaced petroleum entirely as a fuel for cars, often in places where plant based
material is common such as Brazil [1] where sugar cane provides the raw material
for fermentation. While the conversion of plant based materials to ethanol has
a long history, particularly in Europe, through the production of beer as way of
sterilising water [2] it has some significant drawbacks. Specifically, the production
of ethanol via fermentation of sugar takes significant resources away from food
production by utilisation of cropland, irrigation water and fertiliser [3, 4]. Pres-
sure on food production and water conservation is expected to increase with the
progression of climate change making the impacts even more undesirable. This
is particularly well demonstrated in Brazil and the USA where large volumes of
water are consumed [1] and significant volumes of corn syrup are used [5]. Elsew-
here in the world ethanol for industrial use comes from chemical processes, using
sources such as petroleum, natural gas or coal as a source of the carbon. The
continuous flow production methods used in chemical reactors can produce huge
volumes of ethanol at low costs [6].

2



Chapter 1 1.2. Industrial ethanol production

1.2.1 Syngas production through gasification
Using natural material as carbon sources, while maintaining the high pro-

duction rates of synthetic ethanol as well as avoiding compromising food pro-
duction, would be an ideal direction for the industry [7]. An obvious target has
been the use of waste materials as a source, including food waste, waste wood and
plant material. Food waste is difficult to transport and auto-degrades into other
compounds and thus is often more useful as compostable material [8]. Waste
wood and plants are plentiful from the construction, farming and forestry indus-
tries, though this varies by geographical area [3]. One of the major problems with
making use of plant materials is the difficulty of breaking down cellulose, hemi-
cellulose and lignin which are major components of the plant structure. Many of
the natural enzymes and microbes for doing this are slow acting and slow gro-
wing respectively. In order to scale the digestion to the kind of volumes that
commodity chemical production uses, manufacturers must use some of the lar-
gest bioreactors available, around 750,000L [9–11]. While there are projects and
significant research under way to make synthetic enzymes and strains for more
efficient digestion [12, 13], different feedstocks would require different types of
pretreatments to break down bulk material, remove poisoning microorganisms or
toxic chemicals [14].

Instead, an alternative process has been developed, used originally for coal
where high pressure and temperature steam turns the solid carbon into a mix-
ture of simple gasses known as syngas. Syngas is composed of carbon monoxide
(CO), carbon dioxide (CO2) and hydrogen (H2) but can also include small chain
hydrocarbons such as methane (CH4) and ethane (C2H8) [15–17]. Due to the
steam breaking down input materials into simple gasses and ash the conversion is
largely indifferent to the input of the raw material. This in turn enables a flexible
feedstock of material for the generation of syngas; coal, natural gas, petroleum,
green plant material, wood are all viable as carbon sources. This makes syngas
conversion ideal as a starting point for a further processing [16–18].

1.2.2 Clostridium ljungdahlii and syngas conversion to
ethanol

Conversion of syngas to ethanol can be performed by a catalytic process in a
flow-bed reactor using Rh/Mn/SiO2 catalysts [19–21]. However these catalytic
processes result in non specific hydrocarbons, producing a mixture of methane,
methanol and longer chain compounds along with the ethanol, which requires a
significant amount of recycling and refining to purify ethanol from the solution
[19]. For specificity a biological catalyst is much more efficient and can even
be more tolerant to poisoning from unexpected contaminants due to its ability
to repair and regenerate without requiring reactor shutdown or cleaning [22].
Multiple organisms show the capacity for the conversion of syngas to ethanol
via the Wood-Ljungdahl pathway as shown in Fig1.1, however, IneosBio who
sponsored this project make use of a proprietary strain of Clostridium ljungdahlii
and thus I will introduce that bacteria specifically.

Clostridium ljungdahlii is a gram positive, spore forming, rod shaped bacte-
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rium first isolated from chicken yard waste in 1993 [23]. The bacteria was ori-
ginally isolated for its ability to consume syngas and does so while producing
acetate and a small amount of ethanol [23]. Under further study it was discove-
red that under acidic conditions the bacteria can produce a greater proportion of
ethanol, enabling its potential use for industrial ethanol bioproduction [24–26].

In order to produce the ethanol using microorganisms a large volume bioreac-
tor or even multiple bioreactors is necessary to achieve the production rates that
are readily achievable by chemical methods. For example a typical petrol pro-
duction facility can produce 9,000,000 litres of fuel per day [27], of which 5% must
be ethanol in the UK. Using a reasonable value for production rates of bacteria,
40 grams of ethanol per litre of bioreactor per day [28] or 50.7mL, the bioreactor
volume to match the fuel output must be around 7,000,000L. Given the largest
stirred tank bioreactors are around 750,000L at least 10 must be used [11]. The
internal design details can vary depending on the expected volume and medium,
however the major components are: cooling, stirring, gas feed, water and media
feed and beer return. These are optimised on an as needed basis depending on the
particular conditions the reactor is expected to operate under [28, 29], however
they represent significantly complex pieces of equipment and thus will require an
increased maintenance cost compared to a chemical reactor.

4
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Figure 1.1: Wood-Ljungdahl pathway for the conversion of syngas to various or-
ganic solvents by different anaerobic bacteria. Note some bacterial species can
perform multiple conversions and chemical pathways are not stoichiometrically
balanced. Figure sourced from [22].
Abbreviations: AAD, alcohol/aldehyde dehydrogenase; ACS, acetyl-CoA synthase;
ADH, alcohol dehydrogenase; AK, acetate kinase; ALDC, acetolactate decarboxylase;
ALS, acetolactate synthase; AOR, aldehyde:ferredoxin oxidoreductase; BCD, butyryl-
CoA dehydrogenase; BK, butyrate kinase; CODH, CO dehydrogenase; Co-Fes-P, corri-
noid iron-sulphur protein; CRT, crotonase; FDH, formate dehydrogenase; FTS, formyl-
THF synthetase; HBD, 3-hydroxybutyryl-CoA dehydrogenase; HYA, hydrogenase;
MTC, methenyl-THF cylcohydrolase; MTD, methylene-THF dehydrogenase; MTR,
methyltransferase; MTRS, methylene-THF reductase; PFOR, pyruvate:ferredoxin oxi-
doreductase; PTA, phosphotransacetylase; PTB, phosphotransbutyrylase; THF, tetra-
hydrofolate; THL, thiolase
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1.2.3 Beer distillation is the most expensive part of pro-
duction

The primary energy consuming component of the bioethanol production pro-
cess is the distillation of the ethanol from water or cell growth medium in a large
tower fermenter. An industrial distillation column is formed of a series of trays
with a high temperature at the bottom of the column, normally provided by
steam, and a lower temperature near the top allowing for the rising of gaseous
products and descent of condensed water as outlined in Fig.1.2 [30–32].

The concentration of the beer has a significant effect on the energy require-
ments of the distillation column as it determines the number of stages (trays) the
column must have to separate the water and ethanol as well as the energy require-
ments as shown in Fig.4.1 [33]. Due to the chemical properties of a water/ethanol
solution, the maximum concentration a distillation column can reach is 95.5%
using this process, forming a solution known as an azeotrope where the solvent
and solute share boiling points, and must be further processed to produce the
pure anhydrous ethanol desired for chemical processes and fuel additives [30–33].

Since changing the concentration of the beer from the bioreactor has a large
impact on the energy requirements, this step in the process is the most likely to
be affected by any change to the ethanol tolerance of the microorganisms. As
such any consideration of the benefits of experiments within this thesis must keep
Fig.4.1 in mind, where small changes in beer concentration can have significant
energy savings over the physiological range of ethanol tolerances. This is further
enhanced by the large volumes of ethanol produced, as even small savings are
amplified by the thousands of tons of material produced.

6
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Figure 1.2: Diagram of an ideal distillation column for ethanol. Trays allow for
mixing of vapour and liquids as well as increased rate of heat transfer. Bottoms
are a low concentration solution of ethanol which is returned to the bioreactor
for reuse as distillation at low concentrations has a net negative energy output.
Arrows on the right indicate increasing values of ethanol concentration and tem-
perature in the column. [30, 31,33]

1.2.4 Azeotrope dehydration is the final step of production
The final stage in the ethanol production process is the dehydration of the

azeotrope from the distillation process, which can take the form of further distil-
lation using a third solvent or a salt. Addition of the solvent (sually benzene or
cyclohexane) or salt (usually potassium acetate) causes a shift in the boiling point
of ethanol relative to water, allowing the distillation to proceed up to 100%. In
addition varying the pressure in the distillation column or condenser can further
enhance the vapour/liquid equilibrium [33–35].

In non distillative methods, ethanol can be adsorbed by calcium oxide and
filtered from solution, or filtered out directly from solution through selective mem-
branes. While these methods do not require as much thermal energy to operate
as distillation they can suffer a lower efficiency and throughput.

In either case the method chosen for dehydration of ethanol depends on the
existing plant infrastructure and the requirements of the plant itself [35].

This step is independent of the prior process and therefore is unlikely to
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change with any alteration to the microbial production step. While still crucial to
synthesising the final product, it shall be ignored when considering modifications
to the microorganisms suggested in this thesis.

8



Chapter 1 1.3. Osmoregulation in E.coli

1.3 Osmoregulation in E.coli
Osmoregulation is a key process for any type of cell in order to maintain the

cell shape [36,37] and appropriate solvent concentrations to keep proteins in their
native state and allow for proper intracellular reactions [38, 39]. In bacteria and
most other walled cells, when grown in an optimal medium, maintain their cy-
toplasm in a hyperosmotic state relative to the media, thereby creating pressure
on the cell wall known as turgor pressure. In E.coli this is between 0.1 [40] and
3 atmospheres (303 kPa) [38, 41, 42]. The E.coli osmoregulation system allows
adaptation to wide range of osmolarities from 0.015 Osm [43] to 3.0 Osm [44],
which is in excess of a 100 fold change in concentrations. This range is achie-
ved by alteration of the concentration of osmolytes, small, soluble and generally
unreactive molecules, within the cell so as to adjust cell water content.

1.3.1 E.coli ’s response to a hyperosmotic shock
When the external osmolarity of the medium is rapidly increased, termed a

hyperosmotic shock, the cells rapidly lose water and turgor pressure due to os-
mosis [46]. Almost immediately cells respond by accumulating osmolytes from
the medium, including K+ ions, glycine betaine, choline and proline, which al-
lows for water and hence volume recovery. Under conditions of low osmolarities
the primary osmolytes within the E.coli cytoplasm are K+ ions with a small
contribution from Glutamate and with increasing osmolarity of the medium the
proportion of osmolytes within the cell increase linearly as expected [39, 47]. At
higher osmolarities K+ is still the major osmolyte however other anions such as
glutamate and γ-glutamyl accumulate within the cell [48].

The uptake of osmolytes is mediated by a number of proteins that are de-
monstrated in Fig.1.3, with Kdp, Kup and Trk transporting K+ ions [49–52] .
In addition to K+ organic osmolytes are accumulated through multiple channels:
ProU transporting betaines, ProP transporting proline and BetT transporting
choline [42, 53, 54]. These are accumulated to high concentrations within the
cell when they are available in the growth medium [42, 53, 54]. When these are
not present or at very high osmolarity, trehalose, a dimer of glucose, is instead
synthesised by the cell [55–57].

Once cells have recovered their volume they resume growing, however, they
do so at a reduced rate as shown in Fig. 1.4. It is currently not known why the
growth rate is reduced. One previous theory is that a reduced turgor pressure
was responsible as without the pressure the cell would be unable to insert new
membrane or cell wall precursors [58, 59]. Recent experiments have shown that
turgor is not necessary for growth of the bacterial cell wall [60, 61] and as such
the reduced growth rate is still largely a mystery.

With increasing osmolarity, the masses of nucleic acid and protein within
the cell remain constant contrasting with the growth rate which both decrease
linearly [38, 44, 46, 48]. This is also true of decreasing osmolarity, below the
favourable conditions as is shown in Fig.1.4 [38]. Its important to note that
although previous research has indicated that cell volume is reduced at high
osmolarity, this has not been observed in more modern fluorescent microscopy
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Figure 1.3: Figure and caption obtained from [45]. Osmoregulatory systems of
E. coli. In high osmotic pressure environments, solutes accumulate in E.coli via
synthesis (glutamate, trehalose, glycine betaine) or transport from the external
medium. K+-H+ symporter Trk and P-type ATPase Kdp mediate K+ uptake.
Major facilitator superfamily member ProP, ABC transporter ProU, and betaine-
carnitine-choline family members BetT and BetU mediate organic osmolyte up-
take. ProP and ProU are similarly broad in substrate specificity, whereas BetT is
choline specific (Murdock et al., 2014) and BetU is betaine specific. Mechanosen-
sitive channels, including MscS and MscL, release solutes from the cytoplasm of
osmotically downshocked bacteria. Aquaporin AqpZ exacerbates osmotic stress
by accelerating transmembrane water flux. BetT and BetU are homologues of
BetP from C. glutamicum, whereas ProU is a homologue of OpuA from L. lactis
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Figure 1.4: (a)Specific growth rate of E.coli in media of varying osmolarity (va-
ried by addition of NaCl). Minimal medium contained only glucose, buffer and
inorganic salts. Rich medium is Luria Bertani broth. Increase on addition of
1mM betaine to minimal medium is also shown. Figure obtained from [44] (b)
Specific growth rate of E.coli BW25113 in M63 medium with glucose only (black)
or supplemented with 20 mmol glycine betaine and choline, osmolarity was incre-
ased by the addition of sucrose. Bacteria were grown at 37 ◦C in a platereader as
described in section methods 2.1.6

experiments [36] where it is shown that the reduction in cell size is an artefact.
Previously, complex media was used to grow bacterial cells, such as LB, where
size changes occur as a result of many auxic shifts [62] and cells were obtained
at a single optical density, often 0.2. As a result of changes to the growth curve
cells, at higher osmolarity cells at an OD of 0.2 are in a later stage of growth and
thus are smaller but not as a direct result of osmotic effects.

1.3.2 Energy consumption of osmoregulation
Many of the channels and pumps in the cell consume energy in the form of

either ATP or protons (H+ ions), for example the Kdp system consumes ATP
to transport K+ ions [52,63] and the ProP transporter uses protons to transport
choline [64], as indicated in figure 1.3. Since ATP and protons drive most of
the reactions of the cell, including translation and cell wall synthesis, removal of
energy may be causing these contributors to growth to slow down [65]. In addition
organic osmolytes have other uses in the cell such as an alternative carbon source
for growth or for use in other cell reactions, such as proline being an amino acid
used in synthesis of proteins. Of particular note is the osmolyte trehalose which
is formed from a dimer of glucose, therefore representing a significant amount of
potential energy if used as an energy source. In this case the loss of carbon or
other components for use as osmolytes could reduce cell growth rate if the cell
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transport systems are saturated [55,66].

Osmoregulation therefore likely consumes a significant number of resources
otherwise used for cell growth and would result in a reduction of the number of
cells per unit of media (reduced yield). Therefore in batch culture at the end of
growth, when the medium is depleted, we would see this as a lower concentration
of cells.

1.3.3 Known physiological changes of proteome allocation
and diffusion in E.coli

A number of proteins in the osmoregulatory network are upregulated during
osmotic challenge [42, 55, 67, 68]. While the numbers of channels vary the up-
regulation likely indicates that a significant fraction of the cell proteome is devoted
to these proteins and therefore unable to be utilised for growth. This can be in
the form of taking the place of enzymes required to metabolise nutrients or taking
the place of ribosomes which are required to synthesis all proteins in the cell.

Hwa et al. [69] first described and modelled the complex relationship of chan-
ges to the relative proportions of ribosomes and other proteins as a function of
nutrient quality as demonstrated in Fig.1.5. The linear relationship shown be-
tween the growth rate and the ribosome content of the cell (measured by the
RNA/protein ratio) is obtained by growing cells on different quality media and
therefore nutrient availability. They also generated a simple model to describe
this relationship as a function of growth rate:

φR = φR0 +
λ

kt
(1.1)

where φR is the fraction of protein which are ribosomes, λ is the specific growth
rate of the cells, kt is the inverse slope of the line given in Fig1.5A and φR0 is the
vertical intercept.

In addition, the model proposed to describe this phenomena defines two other
categories of proteins, distributed such that:

φP + φQ + φR = 1 (1.2)

with φP representing all proteins needed for the cell to grow on the medium, φQ
representing proteins that do not change concentration in any condition and φR
representing the ribosome fraction. Since the fractions are fixed, any increase
in osmoregulatory proteins must replace proteins belonging to the R fraction
and therefore will decrease the maximum growth rate as a consequence of the
relationship in Eq.1.1.

A further study by Hwa et al. in Fig.1.6B shows that the ribosome fraction
decreases in a similar manner in both osmolarity and nutrient limitation [70].
However, there is a distinct shift in the gradients between the two types of growth
rate reduction, indicating some confounding factors. Hwa et al. suggest that
translational elongation rate is reduced (Fig.1.6A) by a reduction in diffusion of
the precursors (T-RNAs) for protein synthesis but lack direct evidence of these
measurements to confirm their hypothesis.
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Figure 1.5: Figure and caption obtained from [71]. Correlation of the
RNA/protein ratio with specific growth rate λ for various strains of E.coli. (A)
Comparison among E.coli strains grown in minimal medium: Strain B/r [ [72],
squares], 15τ -bar [ [73], diamonds], and EQ2 ( [71], solid circles). The growth
rate is modulated by changing the quality of nutrients as indicated in the key at
lower left. The fraction of total protein devoted to ribosome-affiliated proteins
(φR) is given by the RNA/protein ratio as φR = ρ ·r where r is the measured con-
centration of RNA and ρ is the conversion factor for RNA to ribosome fraction
(see [71] supporting information). (B) The RNA/protein ratio for a family of
translational mutants SmR (triangles) and SmP (inverted triangles) and their
parent strain Xac (circles) [74], grown with various nutrients (see key at lower
left). Translational inhibition of the parent Xac strain via exposure to sublethal
doses of chloramphenicol (circled numbers; see legend table) gave RNA/protein
ratios similar to those of the mutant strains grown in medium with the same
nutrient but without chloramphenicol (light blue symbols). Inset: Linear correla-
tion of kt values obtained for the Xac, SmR, and SmP strains with the measured
translation rate of the respective strains [75] (r2 = 0.99).

A decrease in diffusion constant has been suggested previously based on the
fact that that accumulation of the large numbers of osmolytes in the cytoplasm
may crowd molecules, particularly large ones such as ribosomes, and therefore
reduce the reaction rates by limiting their diffusion [76,77]. Diffusion of particles
within the cytoplasm has been measured both in varying conditions and at high
osmolarities. This is often done during an osmotic shock where cell volume and
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Measurement
Diffusion constant
(µm2s−1)

Method Source

Venus YFP 8(+4− 2) Single molecule tracking [78]
GFP 6.1(±2.4) FRAP [79]
GFP 7.7(±2.5) FRAP [80]
Polysomes 0.04 Single molecule tracking [81]
NDB glucose 50

extrapolation‡ [76]beta-galactosidase-GFP 0.8
50MDa ribosome+mRNA 0.02
TorA-GFP2† 8.3

FRAP [82]
TorA-GFP3† 6.3± 2.6
TorA-GFP4† 5.5± 1.9
TorA-GFP5† 2.8± 1.5
AmiA-GFP† 1.8± 0.8

Table 1.1: Diffusion constants for various proteins or chemicals in E.coli cyto-
plasm. YFP and GFP are fluorescent proteins, TorA:trimethylamine N-oxide re-
ductase, AmiA:periplasmic amidase †Protein tagged with GFP multimers. Cells
were grown with Cephalexin to produce elongated cells. ‡calculated based on
extrapolating from measurements

water content is changed with fewer studies done after the cells have properly
adapted to the growth medium.

The two methods used to measure diffusion in the cytoplasm are FRAP measu-
rements or single particle tracking and are normally performed using fluorescently
tagged proteins within the cytoplasm. Tagging proteins in this manner however,
can lead to effects from binding of the protein to other complexes, itself, or even
interference from the fluorescent tag (often GFP). As a result its often difficult
to compare different measurements and experiments reliably and since many labs
are only interested in a particular target protein do not consider a coherent model
of changes to the diffusion within the cytoplasm.

Some examples of relevant diffusion constants are listed in Table.1.1 along
with their methods of measurement. Its important to note that different diffusion
constants have been measured for the same protein and few measurements have
been made for larger complexes or proteins.

Despite these difficulties measurements have been made of changes to diffusion
as a result of osmolarity, particularly by Poolman et al. who show decreasing
cytoplasmic diffusion at increasing osmolarity by using three fluorescent probes
of different sizes. These probes are a fluorescent glucose analogue, GFP and
a GFP-β-galactosidase fusion [77]. A follow up study on cytoplasmic crowding
[83] using a FRET based crowding reporter shows, paradoxically, that crowding
actually decreases with increasing osmolarity in recovered cells. It is unclear why
the diffusion would decrease while the crowding decreases, however the authors
suggest that it may be due to the difference in size between the FRET sensor
and other molecules in the cytoplasm, particularly the much larger ribosome
complexes formed with with RNA during translation.
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In order to integrate both diffusion and ribosome fractioning I intend to me-
asure both within our strain to hopefully attain a consistent picture of changes
at high osmolarity. Its also important to try to minimise the unforeseen effects
from protein interactions and size differences.

Figure 1.6: Figure and caption obtained from [70] with my notes in italics. Com-
parison of translation parameters under hyperosmotic stress grown in MOPS
minimal medium with glucose and under nutrient limitation. (A) Translational
elongation rate. (B) Ribosome content. (C) Fraction of ribosomes actively trans-
lating. The data points under nutrient limitation are replotted from data in the
article by Dai et al. [84].

1.4 Osmoregulation and ethanol resistance
1.4.1 Membrane based damage and protection

As with other osmotic stressors, ethanol has a number of effects on a bacterial
cell due it being freely permeable across cell membranes; it affects both the cell
interior and exterior. But, unlike osmotic stressors, the ethanol acts by inserting
itself into the membrane, causing increased fluidity with increasing concentrations
of ethanol [85] and indicated by bending of vesicles in Fig.1.7, which ultimately
leads to a decrease in the cells ability to hold onto usually non permeable mole-
cules such as nucleotides or charged ions [86]. Cells respond to this fluidity, both
in solvent tolerant and intollerant strains by increasing their membrane stiffness
through the increased concentration of longer chain membrane lipids and protein
content [85,87–89].

A similar process has been shown to occur in response to an increase in os-
molarity, which has been suggested as a necessary response to changes in cell
turgor pressure. This response operates through the production of molecules
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Figure 1.7: Figure and caption from [95] with my comments in italics. Average
bending modulus of vesicle membranes a value proportional to membrane stif-
fness. kc, values of SOPC vesicles in alcohol/water mixtures: methanol (di-
amonds), ethanol (squares), propanol (triangles), and butanol (circles). Bars
indicate 1 SD. Differences between control and alcohol-exposed vesicles were sta-
tistically significant (P < 0.05) as evaluated by Student’s t-test (α = 0.05) except
for values at 1.70 M of ethanol and 0.39 M of propanol.

such as ubiquinone [90] which insert into the membrane and act to increase its
stiffness, as well as the production of large numbers of osmotransporting chan-
nels [42, 53,91–94].

1.4.2 Protein unfolding and protection by osmolytes
Since ethanol can form strong hydrogen bonds of its own it will compete with

water for protein hydration and therefore alter the stability of protein folding,
binding and the formation of other complexes [96–98]. During an osmotic shock,
a similar process occurs in response to changes in osmolarity, the water content
of cell is significantly altered leading to instabilities in proteins due to the chan-
ges in hydration state [99, 100]. These small changes can significantly alter the
effectiveness of enzymes, for example many purified enzymes used as tools in the
lab require specific buffers to maintain their maximum activity. Alterations are
theorised to be compensated for by the nature of the osmolytes accumulated, with
molecules such as glycine betaine and trehalose being shown to have protective
effects with temperature [99,101,102] and osmolarity [103–106].

1.4.3 Using osmoregulation for in ethanol resistance
Given the overlaps in protein unfolding, changes to the membrane fluidity

and protective effects of osmolytes demonstrated with both ethanol and high
osmolarity, it may be useful to try and utilise the osmoregulatory network to
help improve ethanol resistance. This could take the form of adapting cells to
high osmolarity before exposure to ethanol, adding osmolytes to the medium or
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overexpression of osmoregulatory genes. Since the network is better studied in
E.coli than C. ljungdahlii it makes sense to start my work in E.coli and impro-
ving its ethanol resistance before moving to the IneosBio industrial strain of C.
ljungdahlii.
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Chapter 2

Methods

2.1 Strains and media
2.1.1 Bacterial strains

All experiments were performed, except where mentioned, with E.coli strain
BW25113 (F−, ∆(araD − araB)567, ∆lacZ4787::rrnB-3, λ−, rph-1, ∆(rhaD −
rhaB)568, textithsdR514), a close relative of MG1655, and the parent strain
of the Keio collection [107]. For the optical density calibration measurements
the plasmid pWR20, which expresses and enhanced GFP for cytoplasmic volume
monitoring, was introduced [108].

For ethanol tolerance testing Keio collection mutants were used [107]. The
Keio collection is a library of all non essential single gene knockouts where the
target gene is replaced with a kanamycin resistance cassette.

In order to perform cytoplasmic diffusion measurements a strain of BW25113
was prepared that expressed GFP-µNS protein under control of the Lac operon.
This strain was derived from CJW4617, [109] who constructed the original expres-
sion vector and integrated it into MG1655, using P1 transduction as described
below.

To prepare frozen stocks of all bacterial strains were grown overnight in wha-
tever media an experiment required, diluted 104 in fresh media and allowed to
grow to an OD of 0.2. Cells were mixed with 50% glycerol in a 3:2 ratio before
being frozen in liquid nitrogen in aliquots of 200 µl.

2.1.2 P1 transduction for construction of BW25113-GFP-
µNS

The following protocol was used for the transduction of the GFP-µNS cassette
from the original CJW4617 (MG1655 lacZYA::GFP-µNS) to BW25113. Protocol
is derived with minor modifications from [110]. To move the cassette into a P1
lysate:

1. Inoculate a single colony of the donor strain in 5 ml LB medium and shake
at 37 ◦C overnight.

2. Inoculate 0.05 ml of the overnight culture in 5 ml ml of LB medium contai-
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ning 0.2% glucose and 5 mM CaCl2.

3. Incubate for 30 minutes at 37 ◦C with aeration.

4. Add 0.1 ml of a P1vir lysate (5× 108 phage/ml).

5. Shake or rotate at 37 ◦C for 2-3 hours until the cell lyse.

6. Centrifuge at 4500g for 10 minutes to pellet the debris.

7. Supernatant was then passed through a 0.22µm syringe filter

8. Carefully transfer the supernatant to a sterile, screw-capped tube. Add 0.1
ml of chloroform and vortex to mix. Store the lysate at 4 ◦C.

To introduce the GFP-µNS cassette into the recipient strain by transduction,
I followed the following protocol:

1. Inoculate a single colony of the recipient strain in 5 ml LB medium and
shake at 37 ◦C overnight.

2. Centrifuge the overnight culture at 1500g for 10 minutes and resuspend the
cell pellet in 2.5 ml of 10 mM MgSO4 containing 5 mM CaCl2.

3. To 0.1 ml of resuspend cells in tubes, add variable amount of P1 lysate,
usually from 10 µl to 1 ml. Also prepare a tube of just the P1 lysate as a
negative control.

4. Incubate the tubes for 30 minutes at 30 ◦C without shaking.

5. Add 1 ml of LB with 10 mM sodium citrate.

6. Incubate 30 minutes at 37 ◦C without shaking.

7. Centrifuge 1500g for 10 minutes to pellet. Discard the supernatant.

8. Add 1 ml of 1 M sodium citrate.

9. Plate onto selective medium. For introducing the GFP-µNS cassette from
the Keio Collection, use 50 g ml−1 kanamycin.

Successful transduction was confirmed by taking colonies from the selective
plate and growing them in the manner described in section 2.2 and confirming
particle expression.
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2.1.3 Media
LB

Ingredient Mass for 1 litre (g)
Yeast extract 5
Tryptone 10
NaCl 10

Modified M9 (MM9) [108,111,112]

Ingredient Final concentration (mM)
Na2HPO4 50
NaH2PO4 25
NaCl 10.7
NH4Cl 23.4
MgSO4 1mM
CaCl2 0.1mM
KCl 1mM
Glucose 0.3%
EAA Sigma MEM amino acids 50x 1x

M63

Ingredient Final concentration (mM)
KH2PO4 100
FeSO4.7H20 1.8
(NH4)2SO4 20
Thiamine 0.0001
MgSO4 (1M) 2
cAA (20%) 20
Carbon source (20%) 0.5%w/v

The carbon source is either glucose or glycerol, and the cas-amino acids(cAA)
are optional, generating four variants of the medium; m63-glu, m63-gly, m63-glu-
cAA, m63-gly-cAA.

RDM: Rich Defined Media
This medium is based off the recipe of Neidhardt et al [113] and used in Scott et
al 2010 [71]. This is designed as an optimal growth medium for E.coli with as
many nutrients as possible.
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RDM component Final concentration (mM)
Tricine (MW 179.2) 4.0
Iron Sulfate 0.01
Ammonium Chloride 9.5
Potassium Sulfate 0.276
Calcium Chloride 0.5× 10−3

Magnesium Chloride 0.525
Sodium Chloride 50
Ammonium Molybdate 2.92× 10−7

Boric Acid 4.00× 10−5

Cobalt Chloride 3.02× 10−6

Cupric Sulfate 3.02× 10−6

Manganese Chloride 8.08× 10−6

Zinc Sulfate 9.74× 10−7

Potassium Phosphate Dibasic Anhydrous 1.32
Potassium Hydroxide 1.5
Adenine 0.199
Cytosine 0.199
Uracil 0.199
Guanine 0.199
L-Alanine 0.8
L-Arginine HCl 5.2
L-Asparagine 0.4
L-Aspartic Acid, Potassium Salt 0.4
L-Glutamic Acid, Potassium Salt 0.6
L-Glutamine 0.6
L-Glycine 0.8
L-Histidine HCl H2O 0.2
L-Isoleucine 0.4
L-Proline 0.4
L-Serine 10
L-Threonine 0.4
L-Tryptophan 0.1
L-Valine 0.6
L-Leucine 0.8
L-Lysine HCl 0.4
L-Methionine 0.2
L-Phenylalanine 0.4
L-Cysteine HCl 0.1
L-Tyrosine 0.2
Thiamine HCl 0.01
Calcium Pantothenate 0.01
para-Amino Benzoic Acid 0.01
para-Hydroxy Benzoic Acid 0.01
2,3-diHydroxy Benzoic Acid 0.01
Glucose 0.20%
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All media is filter sterilised through a 0.22 µm syringe filter (Millipore, United
States) to ensure no bacterial or fungal contamination.

2.1.4 Preparation of medium osmolarities
To prepare media of increased osmolarity, 4x concentrated stocks of the above

media were prepared. To compensate for the non linear osmolarity of sucrose high
osmolarity solutions were prepared as follows. A high osmolarity stock of 1.85 M
solution of sucrose was prepared, and mixed with 4x medium and water in the
following ratios:

Desired osmolality
(added mOsm/kg)

4x medium 1.85M sucrose H2O

0 2.5 0 7.5
400 2.5 1.6 5.9
600 2.5 2.4 5.1
800 2.5 3.2 4.3
1000 2.5 4 3.5

For NaCl a 3 M solution was prepared and mixed in the following ratios:

Desired osmolality
(added mOsm/kg)

4x medium 3M NaCl H2O

0 2.5 0 7.5
400 2.5 0.07 7.43
600 2.5 0.10 7.40
800 2.5 0.13 7.37
1000 2.5 0.17 7.33

Note molarity is half for these solutions due to the dissociation of NaCl allo-
wing it to contribute twice as much as sucrose to osmotic increase.

Obtained osmolalities were measured using a freezing point depression osmo-
meter (Camlab, United Kingdom).

2.1.5 Cell growth
Cells were innoculated from frozen stocks at a 104 dilution into 20 ml of fresh

medium dependent on the experiment being performed. Cultures were shaken
in a 100 ml flask at 37 ◦C while being shaken at 200rpm in an orbital shaker.
Optical densitites were measured using 1 ml plastic cuvettes in a Shimadzu UV-
1280 spectrophotometer (Shimadzu, Japan). When optical densities were above
0.6 cultures were diluted 1 in 10 to ensure that they were within the linear range
of the spectrometer.
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2.1.6 Cell growth in platereader
OD measurements of bacterial cultures were performed in a Spectrostar Omega

microplate reader (BMG, Germany) with a Costar Flat Bottom 96-well plate with
lid (Corning, United States) 300 µl per well. Absorbance was measured at wa-
velength 600 nm and temperature 37 ◦C and the mean of 5 readings taken. All
measurements were reported using the BMG with correction values, which is
given as the measured OD multiplied by 1.0560 for 300 µl well volume.

2.1.7 Growth rate analysis
All growth rates quoted in this thesis are given as specific growth rate (µ)

analysed using the software developed by Swain et al [114]. Hyperperamters
were manually tuned to the individual experiment however all data in a given
graph or section were analysed using the same parameters to ensure a consistent
report of growth rate and error.
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Figure 2.1: Diagram of microfluidic slide constructed by drilling through a glass
slide, inserting microtubing which is sealed with epoxy resin and then creating a
channel using two geneframes and a large cover slip.

2.2 Single particle diffusion microscopy
2.2.1 Induction of particle expression

E.coli BW25113-GFP-µNS was grown in M63-Glu-cAA or with the addition
of 1000mOsm of NaCl or Sucrose to an OD of 0.1 at 37 ◦C. This was then
induced with 10, 50 or 200 ng ml−1 IPTG for 20 minutes to induce expression of
the GFP-µNS protein.

2.2.2 Microfluidic slide preparation
For experiments requiring long imaging of a single slide and, thus, constant

supply of nutrients and oxygen, flow-cells were manufactured by drilling two
1.8 mm holes on opposite ends of the microscope slide and attaching Tygon R
Microbore tubing (SaintGobain Performance Plastics, France). The flow-cell was
then created by attaching the geneframe (Fisher Scientific Ltd, USA)to the slide
and covering it with a cover glass as shown in Fig2.1. Slides were coated with
1% poly-L-lysine (PLL) by flushing PLL through the flow-cell/tunnel-slide for
∼10s followed by washing it out with the excessive volume of growth medium.
Cells were then loaded into the flow-cell and incubated for 10 min at 37 ◦C to
allow attachment. Unbound cells were washed out with the growth medium.
Attachment via PLL has been shown to not affect cell growth [115]. Fresh medium
was passed through the flow cell at 50 µl/min using a Fusion 400 syringe pump
(Chemyx, United States) and 10mL syringe (BD plastics, USA) for up to 40
minutes, the maximum length of experiment.
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2.2.3 Cell imaging for diffusion
Cells were observed in epifluorescence using a Nikon Eclipse Ti microscope

with perfect focus at 37 ◦C. At the beginning of each recording cells that expres-
sed GFP-µNS and were flat with respect to the focal plane were identified in the
field of view by taking a single frame in brightfield and then in fluorescence using
methodology described in [46, 116]. Exposure time of both frames was 0.01 ms,
with maximum camera gain and images were captured using a 512 x 512 pixel
back-thinned electron-multiplying charge-coupled device camera (Andor Techno-
logies, Northern Ireland). Once a cell containing a particle has been identified the
camera field of view is narrowed to surround only the cell and data acquisition
performed using streaming mode at 0.01 ms exposure. Illumination was provi-
ded using a 488nm laser (33mW power at the back focal plane of the objective)
using low angle illumination mode using a Plan Apo lambda 100x TIRF objective
(Nikon, Japan).

2.3 Optical Density calibration
Brightfield Microscopy for optical density calibration

Samples for microscopy were prepared by placing a sample of medium and
cells in a microscope tunnel slide [108]. Imaging of samples was performed
using a custom-built brightfield microscope consisting of a CFI Plan Apochromat
Lambda 100x objective (Nikon, Japan) with the sample mounted on a Nano-Z
piezoelectric stage (Mad City Labs, United States). Illumination of the sample
was provided by a white LED (Luxeon Star, Canada) and images recorded on
an iXon Ultra 888 EMCCD camera (Andor, Northern Ireland). Stacks of images
through each sample were acquired every 0.05 s and separations of 0.5 µm, en-
suring all scatterers in the volume were identified without introducing overcoun-
ting. True values of C were experimentally determined by counting N present
in the known stack volume determined by the field of view of the microscope
(55.6 × 55.6×100µm). For each osmolarity, C was determined by counting N
using brightfield microscopy as above.

2.4 Ribosome and protein content measurements
Bacterial culture protein concentration measurements

Protein measurements were performed using a Lowry assay with Petersons
modification [117] using a Total Protein Quantification Kit (Sigma-Aldrich). Cells
were grown as described above, section 2.1.5, to an OD between 0.2 and 0.4 and a
500µl taken, 500µl water added and then the cells were fixed with the application
of 100µl DOC. Each tube had 100 µl of 72% trichloroacetic acid solution added,
was thoroughly vortexed and then centrifuged at 8000g for 10 minutes to pellet
the protein precipitate. The supernatant was decanted and discarded, leaving a
dry pellet. This precipitation step, the Peterson modification, allows for removal
of lipids or metabolites that may alter the reading of the assay.

For the protein measurement, the pellet was resuspended in 400µl Lowry
reagent and 400 µl of water then allowed to stand at room temperature for 20
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minutes. Finally 200 µl of Folin solution was added, allowed to stand for 10
minutes before being centrifuged for 10 minutes at 8000g. The supernatant was
measured at 750 nm.

To convert the absorbance reading to protein concentration a standard curve
was prepared using bovine serum albumin provided as part of the Sigma-kit and
analysed using the same protocol as above.

Bacterial culture ribosome concentration measurements
Technique was adapted from [118] was modified for small volumes by Matt

Scott (University of Waterloo, Canada) who supplied the completed protocol to
us. Cells were grown as described above to an OD between 0.2 and 0.4 and a 1.5 ml
taken and centrifuged for 1 minute at 8000g to precipitate the cells. Cells were
then washed twice using 600µl of 0.7M perchloric acid HClO4 (PCA), centrifuged
at 8000g for 3 minutes and the supernatant discarded. Once washed the cells have
been lysed, then the RNA is hydrolysed by suspending the cells in 300µl of 0.3M
potassium hydroxide (KOH) for 60 minutes at 37 ◦C. 100 µl of 3 M PCA was
added to the extracts, vortexed and centrifuged at 8000g for 3 minutes before the
RNA containing supernatant is transferred to a collection tube. The remaining
pellet is washed twice with 550 µl which is also collected in the collection tube,
ensuring the extraction of all RNA from the sample. Finally, the collection tubes
are centrifuged at 8000g for 10 minutes to remove any remaining cell debris from
the supernatant before it is measured at 260 nm in a UV transparent cuvette.

The final RNA concentration is determined by equation 2.1, where the RNA
is normalised against the optical density of the original culture at sampling time.

RNA(
µg

mL ·OD600

) =
31 ·OD260

OD600

(2.1)

2.5 Ethanol tolerance measurements
1.5 µl frozen stocks of BW25113 and Keio collection mutants was added to

15ml of the test medium and thoroughly vortexed to ensure even mixing. 200µl
of this master solution was added to each well of a with a Costar Flat Bottom
96-well plate with lid (Corning). Sample tray was moved to a 4 ◦C room where
50µl of a water/ethanol solution was added to each well to produce the final con-
centration of ethanol. The low temperature prevents evaporation of the ethanol
becoming a factor in changing the concentrations. Plates were finally sealed using
an optically clear PCR plate seal (BIORAD Microseal ’C’ Film) before being pla-
ced in a platereader. OD measurements of the bacterial cultures were performed
in a Spectrostar Omega microplate reader (BMG, Germany). Absorbance was
measured at a wavelength of 600 nm and temperature 37 ◦C and the mean of 5
readings taken. Once growth curves had been completed, the plate was moved
into a 37 ◦C for a further two days without a lid covering the seal. Plate wells
were checked by eye for a reduction in volume indicating a failure of the seal and
evaporation of the ethanol and growth medium, as such these wells were removed
from analysis.

27



Chapter 2 2.5. Ethanol tolerance measurements

Growth of cells was determined as an increase in optical density over an OD
of 0.2 during the two day growth period.
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Chapter 3

Developed methods

3.1 Single particle diffusion measurement
Useful definitions

Term Definition
MSD mean squared displacement
rg radius of gyration
Recording a video of a single cell with a single particle
Frame a single frame of a recording
Track a table of x, y coordinates of a particle

motion through sequential frames
t time from start of a video section
D real diffusion constant
τ time step for simulation
Dobs diffusion constant observed from MSD

Motivation
Before I would start measuring diffusion within living cells it was important to

understand the necessary parameters for the experiments. Specifically, I wanted
to know how many cells I would need for each particle size in a condition to
properly determine the diffusion constant as well as the influence of imaging
parameters upon the experiment. As well it would be preferable to have an
independent verification of the analysis techniques used. As such I set out to
design a simple computer simulation of single particle diffusion in order to explore
the limits without the difficulties of a practical experiment.

3.1.1 Constructing of a computer simulation of ideal par-
ticles

Each particle starts with coordinates at [0, 0] at frame 0 and time 0. Every
time step the increment (k) is calculated as follows.

k = a
√
τ · d ·Din (3.1)
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Chapter 3 3.1. Single particle diffusion measurement

Figure 3.1: Track of a single simulated particle with Din = 500

Where a is a number generated from a normal distribution of mean 0 and variance
1, τ is the time step, d is the number of dimensions and D is the diffusion
constant [119]. K is generated once for each dimension at every time point and
added to the coordinates as in eq:3.2 to 3.4.

t0 = [0, 0] (3.2)

t1 = [0 + k1, 0 + k2] (3.3)

t2 = [0 + k1 + k3, 0 + k2 + k4] (3.4)

Tracks can be generated for any length or diffusion constant an example trace
is shown in Fig.3.1.

When the particles are free to diffuse to infinity the MSD of particles tends
to increase linearly with time as in Fig.3.2a. However in a bacterial cell any
particle will be confined to its interior and therefore cannot diffuse to infinity
and as such will limit the maximum displacement. In order to include this in
the simulation we created a simple bounded cell represented by a rectangle with
length 3 and width 1 with centre of mass at [0,0]. The bounds are flat, such that
when xt > xlim, xt = xlim, and the simulation parameters are such that an x
length of 1 is equal to 1 µm.

3.1.2 Calculating diffusion constant from using mean squa-
red displacement

For every track the MSD for each lag time tl is calculated as in eq5.

MSD(tl) =
1

N

lim∑

t=0

(x(tl + t)− x(t))2 + (y(tl + t)− y(t))2 (3.5)
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(a) (b)

Figure 3.2: a) Mean squared displacement for 100 simulated particles ofDin = 500
and total simulation time of 500 steps. b) Input/observed diffusions for various
input Ds given no bounds on particle motion. Sample size used was 1000 particles
per input diffusion constant, simulated for 500 timesteps at 0.01s resolution, with
max lagtime of 50 timesteps. Observed diffusion constant shows very close value
to input diffusion, small deviations are a result of statistical noise.

where x is the x coordinate of a single particle at a given time. The graph of
MSD vs tl is plotted and a straight line fitted y = mx + c where the diffusion
constant Dobs = m/4

3.1.3 Confirmation of simulation predictive capacity
In order to confirm that the simulation produced a real diffusive model, I

simulated a large number of particles with a fixed diffusion constant Din. I then
used the MSD calculation as described above to produce a Dobs which could be
compared with the input to see if the simulation was accurate. The results of one
of the experiments is show in Fig. 3.2b. As expected I see close association of the
Dobs and Din with some variance which is likely a result of statistical noise. This
is normally corrected in practical experiments by processing all tracks of a given
sample as a single dataset and fitting against that, however such methodology
is not possible in the practical experiments due to the variations in particle size
and thus noise must be dealt with in another manner.

3.1.4 Estimating the sample size required
Since noise is expected due to the random nature of diffusion, I must determine

a reasonable sample size for our experiments under ideal conditions. To do this I
simulated varying numbers of theoretical particles using a single diffusion value
in the mid range of quoted values for the bacterial cytoplasm such that Din =
0.1. In Fig.3.3 we see that the noise between replicates decreases as the particle
number increases, however the noise is maintained up to 500 particles. Since this
represents the noise of each bin for a given particle size selecting a large number
would require significant data collection. As a compromise I chose to obtain bin
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Chapter 3 3.1. Single particle diffusion measurement

Figure 3.3: Dobs/Din diffusions for various particle numbers. Each point repre-
sents the average Dobs for the number of particles on the x axis. For each particle
number, 10 independent experimental replicates were performed to obtain an
idea of noise generated by the sampling. For every simulation Din = 0.1 with no
bounds, simulated for 500 timesteps at 0.01s resolution, with max lagtime of 50
timesteps.
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Chapter 3 3.1. Single particle diffusion measurement

Figure 3.4: Dobs/Din of diffusions for particles confined to cells of dimensions
given above. Each point represents the average Dobs for 100 simulated particles.
Each particle is simulated for 500 timesteps at 0.01s resolution, with max lagtime
of 50 timesteps.
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Figure 3.5: Mean squared displacements for 50 particles using the same conditions
as in figure 3.4 and Din = 0.1.
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Chapter 3 3.1. Single particle diffusion measurement

Figure 3.6: Dobs/Din of diffusions for particles confined to cells of dimensions
3 by 1µm, where Din = 0.1. Each lag limit was repeated 3 times in order to
demonstrate that the underestimation is not a function of statistical sampling.
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Chapter 3 3.1. Single particle diffusion measurement

Figure 3.7: Dobs/Din of diffusions for particles confined to cells of dimensions 3
by 1 µm, where Din = 0.1 and where the simulation timestep is blue) 10ms (as in
previous figures) and red) 0.1ms
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sizes of around 100 particles, where expected variation is below 5% but particle
numbers should be obtainable.

3.1.5 Error in diffusion estimation due to confinement of
particles

Since the cell volume is on the same order as the diffusion constants for parti-
cles, detailed in section 1.3.3, with that of GFP being 7.7 µm2 s−1, we can expect
that confinement of the particles may have some influence on the measurement
of particle diffusion. As such we take the simulations in Fig.3.2b and repeat the
simulations with the particles confined within a model cell of 1 by 3 µm.

When particles are confined within the cell in Fig.3.4 we see significant devia-
tion of the Dobs/Din ratio at higher diffusion constants with an order of magnitude
deviation around 1µm2 s−1. When we observe the mean squared displacements,
Fig.3.5 we see that they saturate at relatively short lag times for high diffusions.
Since the simulation assumes the particles start at the centre of the cell this is
also the best possible case and therefore in real data the saturation time could
be even shorter. A saturation of the MSD is expected as maximum displacement
of the particle between any two time points is a function of the length of the cell
and not the diffusion of the particle. As such it would be preferable to keep lag
times short for analysis of these particles. When this is done as in Fig.3.6 we see
that even at very low lagtimes an underestimation of the particle diffusion is still
significant and present.
Since confinement must be responsible for the change in behaviour of the obser-
ved diffusion constant it is possible that any encounter with the boundary causes
problems with observations. As such it would be necessary to obtain sufficient
data of particle motion before this point by increasing the rate of measurements.
When we decrease the time intervals between measurements as in Fig.3.7 we see
that the underestimation decreases as the intervals become arbitrarily small. In
practice however, the rate of the measurements is limited by the maximum frame
rate of the camera on our microscope setup at 10 ms. So instead, if we use mean
square displacement, we must use the simulation data to provide a correction
factor for measurements in order to correct for the bias generated by the low
frame rate.

3.1.6 Radius of gyration minimises error
Since the mean squared displacement shows significant biases due to the con-

finement of particles it is reasonable to look for another way to measure diffusion
from the data. One method that has been used to infer diffusion constant in the
literature is the radius of gyration [109, 120, 121]. This method is normally used
in polymer physics to describe the range of motion of a particle chain around a
centre of mass. Since the maximum any particle can move is the edge of the cell
this measurement would intuitively seem appropriate to use. Since there is no
way to directly convert radius of gyration to a diffusion constant or vice versa I
decided to test the method on the model to see if it gives a reliable interpretation
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Chapter 3 3.1. Single particle diffusion measurement

Figure 3.8: Radius of gyration vs input diffusion constant for two different sam-
pling rates; blue:10ms, red:0.1ms. Each data point represents the mean values of
10 simulations with 500 data points and maximum lagtime of 10 time intervals.

of diffusion constant. The equation was modified as follows: For the centroid xc

xc =
1

N

t=∞∑

t=0

xt (3.6)

To calculate the radius of gyration rg

rg =

√√√√ 1

N

lim∑

t=0

(xt − xc)2 + (yt − yc)2 (3.7)

Repeating the simulations run in Fig.3.6 with the radius of gyration gives the
data in Fig.3.8. The radius of gyration increases linearly with the input diffusion
constant without the decrease at high diffusion values seen with the mean square
displacement. This is still sensitive to the frame rate if it defines the length of
time the radius is calculated for, when this is consistent the radius of gyration
produces a reliable result for a given diffusion constant.

3.1.7 Particle localization from microscopy videos
After gathering videos using the method described in Methods 2.2 we must

extract tracks for diffusion analysis. In order to create the tracks for analysis
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we must first localise each particle inside a given frame. To do this we use a
Crocker-Grier centroid-finding algorithm which looks for Gaussian like blobs in
the image [122]. For every frame of video, candidate spots of radius 11 pixels and
that are above a minimum intensity value greater than 99.8% of the image are
chosen. From this an x and y coordinate in pixels is obtained from the frame.

Once an entire video is processed the software links particles in consecutive
frames together, producing a complete track of the particle motion. As each cells
can only have one particle at a time, the linking can occur with minimal false
connections. Since this requires a particle to be detected in every single frame,
when a particle leaves the image plane in z or the noise gets too great due to
bleaching a single video of a single particle can create multiple tracks of varying
length. In order to remove spurious tracks I set the lower limit on the length to 5
frames, this removes any noise related traces that occur when the particle is out
of focus or the intensity is below the threshold of the camera. Pixel values are
then converted into micrometers (µm) using a previously measured value for the
microscope (125nm/px). In addition, for videos with multiple tracks that occur
when the particle is out of focus or is bleached, the values of the diffusion constant
is averaged under the assumption that each represent the variable distribution of
a single particle.

Since each particle is a result of expression of protein attached to GFP, the
intensity of the spot formed is directly correlated with the number of proteins,
and thus the size of the particle. To obtain an accurate measurement of particle
intensity, we perform a z-stack, where multiple images are taken at different z
positions on the stage. Since the particle will have the greatest total intensity
when perfectly in focus with the z-axis of the scope we identify spots in all slices of
the z-stack, and then take the one with the greatest total intensity. This intensity
is associated with the entire recording and is used as a proxy for particle size when
analysing the data.

39



Chapter 3 3.2. Optical density calibration

3.2 Optical density calibration
3.2.1 Introduction to publication

One of the key measurements used in the later experiments are optical density
measurements for identifying the stages of growth and determination of growth
rate. As such, early on in the project I attempted to create a simple calibration
of optical density to cell number or mass but found significant deviations at high
density and in different osmotic conditions. An understanding of calibrations is
essential when trying to create a quantitative model of cell growth in varying
conditions such as antibiotic tolerance or osmolarity.

Through collaboration with another lab we helped define the conditions which
affect the calibration and put their relevance in context with work in bacteria and
yeast. We proceeded with the view that knowledge of calibrations and scattering
theory are crucial when many groups are using microplate readers to perform high
throughput experiments without necessarily considering the effects their testing
conditions may have on their data.

For the content of this thesis it is important to understand the relationship
between optical density measurements and cell concentration during growth as
demonstrated in Fig.4. This is particularly important when dealing with growth
in sucrose which changes the refractive index of the medium as shown in paper
Fig.S7 and S8.

The following chapter is presented as a publication written with the collabo-
ration of Dr Alexander McVey and Dr Teuta Pilizota (Pilizota lab, Edinburgh
University), Dr Ivan Clark and Dr Peter Swain (Swain lab, Edinburgh Univer-
sity) [123]. Dr McVey contributed the introduction and much of the derivation of
scattering theory, Drs Pilizota and Swain contributed to the experimental design
and writing and Dr Clark provided the calibration data for yeast.

3.2.2 Conclusions relevant to this thesis
From the data presented within the paper we can conclude that it is important

to calibrate optical densities where they are used as a quantitative measurement
of cell growth. Different spectrometers, growth conditions, growth phases and
osmolarities will cause changes in calibration curves as a result of cell size or me-
dia refractive index changes. As such for data in the rest of this I will endeavour
to perform calibration curves as described within the paper to convert to cell
concentration. Since this will require a significant amount of cell counting I deve-
loped a neural network described in chapter 3.3 to help streamline and automate
the process.

3.2.3 Publication: General calibration of microbial gro-
wth in microplate readers
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General calibration of microbial 
growth in microplate readers
Keiran Stevenson1, Alexander F. McVey1, Ivan B. N. Clark2, Peter S. Swain2 & Teuta Pilizota1

Optical density (OD) measurements of microbial growth are one of the most common techniques 
used in microbiology, with applications ranging from studies of antibiotic efficacy to investigations 
of growth under different nutritional or stress environments, to characterization of different mutant 
strains, including those harbouring synthetic circuits. OD measurements are performed under the 
assumption that the OD value obtained is proportional to the cell number, i.e. the concentration of 
the sample. However, the assumption holds true in a limited range of conditions, and calibration 
techniques that determine that range are currently missing. Here we present a set of calibration 
procedures and considerations that are necessary to successfully estimate the cell concentration from 
OD measurements.

Bacteria and yeast are widely studied microorganisms of great economic, medical and societal interest. Much 
of our understanding of bacterial and yeast life cycles stems from monitoring their proliferation in time and the 
most routine way of doing so is using optical density (OD) measurements. The applications of such measurements 
range from routine checks during different cloning techniques1; through studying cellular physiology and metab-
olism2,3; to determining the growth rate for antibiotic dosage4,5; and monitoring of biomass accumulation during 
bio-industrial fermentation6. Here we introduce a set of calibration techniques that take into account the relevant 
parameters affecting OD measurements, including at high culture densities, in a range of conditions commonly 
used by researchers.

OD measurements have become synonymous with measurements of bacterial number (N) or concentration 
(C), in accordance with the Beer-Lambert law. However, OD measurements are turbidity measurements7,8, thus 
the Beer-Lambert law can be applied, with some considerations, only for microbial cultures of low densities. OD 
measurements in plate readers, increasingly used for high-throughput estimates of microbial growth, operate pre-
dominantly at higher culture densities where OD is expected to have a parabolic dependency on N8. Additionally, 
the proportionality constants (either in low or high density regimes) strongly depend on several parameters, for 
example cell size, which need to be included in robust calibration techniques. Yet, these techniques, essential 
when using OD measurements for quantitative studies of microbial growth, including growth rates, lag times and 
cell yields, have thus far not been established.

The Beer-Lambert law (Supplementary Note 1) assumes that light is only absorbed to derive OD ~ C, which 
is true if the light received by the detector of a typical spectrophotometer is the light that did not interact with 
the sample in any way7,9. In general, when microbial cells are well dispersed in the solution (for the cases where 
N is small, i.e. single scattering regime) and the geometry of the spectrophotometer is suitable, the Beer-Lambert 
law is a good approximation for turbidity measurements, and N (or C) is ~OD7,8. By the suitable geometry of the 
spectrophotometer, we mean the likelihood of the scattered light reaching the detector in the spectrophotometer 
even in the single scattering regime (Fig. 1A,B).

Most bacteria and yeast scatter light at small angles (a few degrees)10, and, thus, the distance from the scatterer 
to the detector (d) and the radius (R) of the aperture (Fig. 1A) will determine how close a particular spectropho-
tometer is to the ideal case, even in the single scattering regime. Supplementary Figure 1A shows measurements 
taken of the same sample in five different spectrophotometers, indicating that different spectrophotometers need 
to be cross-calibrated even when used in the single scattering regime9,11. As N increases the probability of inci-
dent light being scattered by particles multiple times also increases (Fig. 1B), the so-called multiple scattering 
regime. In this regime the Beer-Lambert law is no longer a suitable approximation, and OD is expected to have 
a parabolic dependency on N8. Similarly, as the probability of multiple scattering events increases even further 
(i.e. for very high N), light is increasingly deflected away from the detector, and can be described with diffusive 
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approximations (the so-called photon diffusion limit)12,13. Figure 1C shows a typical OD curve for Escherichia coli 
grown in rich media, with the single and multiple scattering regimes indicated.

In the single scattering regime (small N and OD600 ≲  0.2)8,13,14, where the Beer-Lambert law (OD ~ N) 
approximately holds, exact solutions to the scattering problem exist9. Depending on the size and shape of 
the scatterer (bacteria or yeast), as well as difference in the index of refraction between the scatterer and the 
media, various approximations have been used (Supplementary Table 1). For example, the Jöbst approxi-
mation, used for spherical bacteria with dimensions comparable to the wavelength of light (r ~ λ, where r is 
radius of the bacteria and λ the wavelength of incident light), gives the OD to be proportional to N and r4  
(i.e. bacterial volume to the power of four thirds)15.

Multiple scattering effects can be incorporated into scattering theory with the inclusion of a correction fac-
tor CF(σ, z) (Supplementary Note 2), but, unfortunately, to calculate the correction factor, N must be known. 
Therefore, when using microplate readers in the multiple scattering regime the most practical way of deter-
mining the relationship between OD and N is to calibrate. Correct calibration is of particular relevance to 
high-throughput measurements of quantitative growth rate and cell yield in plate readers and bio-reactors, but it 
is rarely reported. Additionally, it is often assumed that a single calibration curve for a given instrument is suffi-
cient16, or calibration is performed by counting colony forming units (CFUs)17, which only includes live bacteria 
and is not necessarily suitable for growth under different antibiotics (where cells can be dead, but not lysed). For 
correct calibration, the shape and size changes of scatterers (bacteria and yeast) as well as index of refraction 
changes of the media (nm) and/or of scatterers (np) need to be taken into account.

Results
Smaller scatters have higher concentrations for a given OD. To demonstrate the effect of differences 
in the size of scatterers on OD in the single and multiple scattering regimes, we measured monodisperse solutions 
of beads with different diameters (D), known index of refraction and known concentrations (C) determined by 
direct counting in a microscope. Calibration curves for each sample of beads are given in Fig. 2A. For a fixed OD, 
C increases as the diameter of the scatter decreases (Fig. 2B). The relative effect of C on OD is more pronounced for 
D ~ λ, in both the single and multiple scattering regimes, indicating that any changes in size for yeast cultures (with 
typical cell size ~5 µm) should affect the calibration curve less than those for bacterial cultures (with typical cell 
size ~1 µm). Similar conclusions also hold true for samples heterogeneous in size. Upon introduction of a polydis-
perse sample of 0.5 µm and 1.0 µm diameter beads (a 1:1 mixture by volume), C is seen to deviate greatly from both 
monodisperse solutions (Fig. 2C). Consequently, while the OD versus C calibration curves follow similar trends  
(a second order polynomial)8, the exact calibration curve is highly dependent upon D, particularly for D ~ λ.

Calibration of OD typically changes with growth conditions and cell size. The effects of changing 
the size of the scatterer seen in bead suspensions are also visible in cultures of E. coli and yeast measured in a 
plate reader (Fig. 3A and Methods). The representative images (Fig. 3B–H) show the change in cell geometry. We 
obtained different cell sizes for E. coli by sampling either at different stages of growth in rich undefined media 
(Supplementary Fig. S4) or by growing the culture in the presence of a sublethal concentration of ampicillin, a 

Figure 1. Schematic showing that light incident on a sample is scattered by an angle θ from the optical axis (z), 
either once as in (A) or multiple times (B). Single scattering events are more likely to deflect light away from 
the aperture (radius R), but the effect of this scattering is highly dependent upon the size of the detector and the 
distance between detector and sample (d1 or d2). As the concentration of cells increases, the probability of light 
being scattered back into the detector is increased. (C) A typical OD curve for E. coli measured at λ =  600 nm 
(for measurements at different λ see Supplementary Fig. 2). The depicted curve is the mean value of ten replicate 
measurements (performed in separate wells of the same plate in the microplate reader and on independent days 
and separate plates). Error bars are the standard error of the mean. Where the error bars are not visible, they are 
smaller then the data symbols. Single and multiple scattering regimes have been indicated with different colour 
shading. The OD saturates when N is large enough to deplete the nutrient sources in the media.
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β-lactam antibiotic that inhibits the formation of the cell wall. Ampicillin induces filamentation18,19 (Fig. 3E), a 
property shared by many other stresses (including the antibiotic groups cephalosporins and quinolones20 and UV 

Figure 2. OD measurements of spherical polystyrene bead suspensions. Each set of data (for a given bead 
size) consists of dilutions of two independently prepared stock solutions whose actual concentration was 
determined by counting in a microfluidic slide (Methods). For each independently prepared dilution series 
at least five experimental replicates were performed and plotted as averages with standard errors. Where 
independent dilution series were prepared for the same bead size these are plotted with the same colour. The 
differences between independently prepared and counted dilution series for the same bead size are so small that 
the data overlap. Any error bars that are not visible are smaller then the data symbols. Bead size corresponds to 
the diagram above the graphs (0.51 ±  0.01 µm, 0.96 ±  0.07 µm, 3.00 ±  0.07 µm, 10.0 ±  0.6 µm and 15.7 ±  1.4 µm) 
and bead index of refraction is np =  1.59. Representative images of beads used for C measurements are shown in 
Supplementary Figure 3. (A) Comparison of concentrations (Methods) and measured OD in a microplate reader 
for a given bead diameter. (B) The bead concentration as a function of D obtained from (A) for the following 
ODs: 0.05, 0.1, 0.5, 1 and 10. Increasing OD is represented as increasing brightness of red and by the arrow.  
(C) Measurements of 0.5 µm; 1.0 µm bead suspensions and the resultant (1:1 by volume) mixture in purple.

Figure 3. (A) OD vs. C is shown for yeast diploids (grey); yeast haploid (purple); filamentous (green) and 
mid-log (black) E. coli; and early (blue) and late (red) stationary phase E. coli using dilutions of at least two 
cell stock solutions prepared from cells grown on different days. Actual cell concentrations were determined 
by counting in a microscope. For each independently prepared dilution series at least five experimental 
replicates were performed and are plotted as averages with standard errors. Independent dilution series that 
were prepared for the same cell size are plotted with the same colour. For cells of the same size, the differences 
between independently prepared and counted dilution series are so small that the data overlap. Error bars 
that are not visible are smaller then the data symbols. (B–H) Representative images of each culture obtained 
during microscopy. The scale bar is shown in B and applies to all panels. (B) Yeast CLN3Δ  homozygous diploid 
mutant (C) Yeast diploid, (D) Yeast haploid. (E) E. coli cells grown in the presence of sub lethal concentration of 
ampicillin to induce filamentation. (F) E. coli cells grown to mid log phase in LB (OD =  0.2). (G) E. coli cells at 
early stationary phase (OD =  2.3), (H) E. coli cells at late stationary phase (after 40 hr).
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irradiation and oxidative damage21). We obtained different sizes of yeast cells by using three different strains (wild 
type haploid and diploid and a diploid mutant exhibiting increased cell size)22.

Each chosen scatterer in Fig. 3 exhibits a different relationship between OD and C. In particular, the calibra-
tion curve obtained using filamentous cells is considerably altered compared to the rest of the E. coli samples. The 
differences in the calibration of the yeast samples (as D increases from 4 µm to 6 µm) are smaller compared to 
those of the bacterial cultures.

The effects of changes in the calibration curve during a single growth curve are demonstrated in Fig. 4 and 
Supplementary Figure 5 by counting the cell concentration in parallel with measuring the OD. We first show 
that if the cell size does not change during the growth of the culture, the calibration curve maintains a parabolic 
dependency on N (Fig. 4A). To maintain a constant cell size, we grew E. coli in MM9 with glucose as the sole 
carbon source (Methods). Under these conditions OD and C are correlated throughout the exponential growth, 
only diverging at 15 hr when the carbon source is depleted and the cells enter stationary phase and reduce in 
volume. Nevertheless, if cells change size during growth, for example when growing on rich undefined media 
(Supplementary Fig. 5), the calibration curve will change in time as well. To demonstrate the effect of using cali-
bration curves obtained for cells of different sizes, in Fig. 4B we show the OD curve from Fig. 4A converted to C 
using three different calibrations curves. C is substantially altered depending on the calibration curve selected, 
with the effect on the lag time and final cell yield being particularly pronounced.

To further demonstrate the effect on changes in cell size throughout the growth curve we grew E. coli under 
sublethal concentrations of ampicillin (Fig. 4C). A substantial deviation between OD and C is visible. During the 
initial part of the log phase OD and C show the same time dependency. At OD ~ 0.2, however, N remains roughly 
constant while the OD increases. This increase in OD for constant N is the result of an increase in cell mass (as 
cells filament and increase in size), rather than increasing N (Fig. 3E). The decrease in OD at constant N (10 hr) 
is most likely the result of division of filaments into smaller cells. 15 hr after culture inoculation, both N and OD 
increase again as filamentous bacteria both divide and grow as smaller cells.

There can be a substantial difference between the expected OD and C relationship for scatterers of a fixed size 
and those whose size changes during growth. For example, in Supplementary Figure 5 we show comparison of 
OD and C from Fig. 4A and 4C. For a constant cell size (Supplementary Fig. 5A), the calibration curve follows the 
same second degree polynomial expected from Figs 2A and 2C and 3A, whereas for growth in LB+ ampicillin, 
where cell size changes, the calibration curve is more complex (Supplementary Fig. 5B). Supplementary Figure 6 
shows the difference between growth rates obtained from non-calibrated OD and C measurements for the same 
cell culture. The value and time point at which maximum growth rate is reached in Supplementary Figure 6A 
(corresponding to Fig. 4A) are similar, whereas Supplementary Figure 6B shows that maximum growth rate 
obtained from Fig. 4C is reached several hours before the maximum growth rate obtained from OD measure-
ments. Additionally, Supplementary Figure 6B shows that the two values differ significantly, by a factor of two.

Calibration changes with the refractive index of the growth media. Apart from the size of the 
scatterer, changes in the difference between refractive index of the growth media (nm) and the refractive index of 
the scatterer (np) can have a significant effect on the OD calibration curve. For example, we changed nm by the 
addition of sucrose, while keeping the refractive index of the scatterer (1 µm bead) the same (Supplementary Fig. 7). 
As the relationship =n

n

n
p

m
 decreases, the OD of a fixed N is similarly reduced. The effect is small for beads as the 

relative difference between np and nm is large, but will be more pronounced for biological samples like bacteria, 
which have a smaller n (Supplementary Table 2).

Finally, we investigated the effect of bacterial lysis and intracellular matter leaking into the media on nm, 
which can occur during growth under antibiotics. We measured the refractive index of LB media with different 

Figure 4. Growth curves and cell counts. (A) OD (black) and cell concentration (orange) during growth 
of E. coli in MM9 with glucose. OD and C are correlated until starvation when cell size is no longer constant. 
(B) The OD curve from (A) converted to cell concentration using the the mid-log (black), 15 hr (blue) and 
40 hr (red) curves in Fig. 3A. Calibration performed on cells of different sizes produces substantial differences 
in cell concentration. (C) OD (black) and cell concentration (green) in LB with 9 Ampicillin. The lack of 
correlation between OD and C is caused by antibiotic induced filamentation and filaments of fluctuating length 
during growth. For (B) and (C), the OD curve shown is an average with standard errors of 10 independent 
experimental replicates. Each cell concentration point is an average count with the standard error obtained from 
counting 20–50 independent fields of view in a microscope (Methods).
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concentrations of lysed E. coli cells. The intracellular material (Supplementary Table 3 and Supplementary Fig. 8), 
released into the media from high concentrations of cells (as high as 2 ⋅  109ml−1 cells) results in only a small 
increase in nm. The increase is substantially lower than nm variations caused by the introduction of even low 
concentrations of sucrose to ddH2O (Supplementary Fig. 8). Thus, cell lysis as a result of growth under different 
antibiotics will unlikely change nm sufficiently to alter the OD versus C calibration curve. Nevertheless, growth at 
high sugar concentrations, such as in the food industry, will.

Discussion
We have presented potential issues and the calibration protocols needed for quantitative measurements of micro-
bial growth rates based on OD measurements. We show that different spectrophotometers and microplate readers 
need to be cross-calibrated to compare the OD readings as an absolute number. Furthermore, variations in diam-
eter D and refractive index of the cell or of the media need to be considered and calibrated to avoid substantially 
over- or underestimating the number of cells present in the sample. Therefore, we recommend first determining if 
considerable changes in cell size are expected during growth of the culture. If not, and size is expected to remain 
constant, calibration of OD against N needs to be performed once for each D and index of refraction, and ideally 
reported in publications. The closer the D of the scatterer to λ, the more important it is to perform calibration of 
OD against N for each different cell size. Changes in refractive index can be particularly relevant during growth 
in media with high sugar concentrations (such as those in food sciences23–26 and drinks with high osmolarity like 
beer). We have shown that changes in nm due to lysis induced leakage of cell material, for example when grown 
in the presence of antibiotics, are small. However, we note that the effect of changing media index of refraction 
is likely to be more pronounced in bioreactor experiments where C is far larger. If cell size is expected to change 
substantially during the course of growth of the microbial culture (for example: growth under antibiotics or var-
ious other stresses, growth of shape-inducing mutants, growth of over-expression strains, and growth of strains 
that induce chains or clumps), OD measurements are no longer suitable and direct counting of N should be per-
formed, using, for example, microscopy.

Methods
Bacteria cultures. All bacterial cell culture studies were conducted using E. coli BW25113 (F−, DE(araD-
araB)567, lacZ4787(del)::rrnB-3, LAM−, rph-1, DE(rhaD-rhaB)568, hsdR514), a close relative of MG1655, with 
plasmid pWR20 which expresses and enhanced GFP for cytoplasmic volume monitoring27. All experiments were 
conducted in LB media except where explicitly stated. MM9 medium contained 0.1% Glucose, no amino acids 
and 20 mmol KCl. MM9 (Modified M9) is of the same composition as M928 except sodium phosphate buffer only 
was used. Where cells were grown with antibiotics, 9 µg ml−1 Ampicillin was added to the culture medium before 
the addition of cells.

Yeast cultures. Yeast studies used three S288c-derived strains: BY4741, BY474329 and the cln3 homozygous 
deletion derived from the Saccharomyces genome deletion project30. Cells were cultured at 30 °C in YPD media, 
containing 2% glucose.

Colloidal bead cultures. Colloidal bead cultures were created using dilutions of polystyrene beads of known 
diameter (D) 0.51 ±  0.01 µm (Polysciences), 0.96 ±  0.07 µm (Bangs Laboratory), 3.00 ±  0.07 µm, 10.0 ±  0.6 µm 
and 15.7 ±  1.4 (all Polysciences) and known index of refraction (np =  1.59) in ddH20. At each D, a dilution series 
was performed, to produce samples of known concentrations (C) between 105 and 1012 N ml−1. For all samples 
C was experimentally determined by counting the number of beads in 10 of the dilution in a microscope tunnel 
slide27.

Optical density measurements. OD measurements of bacterial and colloidal bead cultures were per-
formed in a Spectrostar Omega microplate reader (BMG, Germany) with a Costar Flat Bottom 96-well plate 
with lid and 200 µl per well (300 µl for data in Fig. 4). Absorbance was measured at wavelength 600 and temper-
ature 37 °C and the mean of 5 readings taken. For bacterial cultures, 30 wells were grown to OD =  0.15 in MM9 
medium. The wells were pooled and 125 µg ml−1 chloramphenicol was added to inhibit further cell division or 
growth. The cells were then diluted in increments to provide a range of OD readings. A single dilution of cells for 
each series was then imaged in the brightfield microscope as above for the polystyrene beads. All measurements 
in the main text were reported using the BMG with correction values, which is given as the measured OD multi-
plied by 1.0560 for 300 µl, 1.5848 for 200 µl and 6.3694 for 100 µl.

OD measurements for yeast cultures were performed in a Tecan M200 fluorescent spectrophotometer, using 
a Costar Flat Bottom 96-well plate with lid and 200 µl per well for all measurements. Cells were cultured for 16 hr 
in YPD media and dilutions for measurement made in the same media. Duplicate OD measurements were taken 
at 600 nm (bandwidth 9) with 15 flashes at 30 °C. Yeast cell counts were performed using a Neubauer improved 
bright-line haemocytometer (Marienfeld).

Calibration between the two spectrophotometers was performed using E. coli grown in LB to mid log as 
in Fig. 3A black and the OD measured in both platereaders. The relative difference in measurements was then 
calculated and used to correct the data gathered for yeast. The calibration is shown in Supplementary Figure 1B.

Brightfield Microscopy. Imaging of samples was performed using a custom-built brightfield microscope 
consisting of a 100×  oil immersion objective lens (Nikon) with the sample mounted on a Nano-LP200 pie-
zoelectric stage (Mad City Labs). Illumination of the sample was provided by a white LED (Luxeon Star) and 
images recorded on an iXon Ultra 897 EMCCD camera (Andor). Stacks of images through each sample were 
acquired every 0.05 s and separations of 1 µm, ensuring all scatterers in the volume were identified without intro-
ducing overcounting. True values of C were experimentally determined by counting N present in the known stack 
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volume determined by the field of view of the microscope (55.6 ×  55.6 ×  100 µm). For each each bead preparation 
in Fig. 2 between 20–50 independent fields of view were counted. Similarly, for each cell preparation in Fig. 3 we 
counted 20–50 independent fields of view. For each bead or cell size given in Figs 2 and 3, we used at least two 
independent stock solutions/cultures (from which dilution series were prepared). In Fig. 4A and C each concen-
tration of cells was counted independently, again using 20–50 independent fields of view.

Osmolarity measurements. For osmolarity measurements, beads (D =  1 µm) were diluted from manu-
facturer stock solution into ddH2O and then further diluted into solutions of 0 mOsm, 116 mOsm, 231 mOsm,  
463 mOsm and 925  mOsm (achieved by diluting sucrose (Sigma) in ddH2O) to produce concentrations in media 
of refractive index nm =  1.333; 1.339; 1.344; 1.353 and 1.368 respectively. For each osmolarity, C was determined 
by counting N using brightfield microscopy as above. Osmolalities were measured using a freezing point depres-
sion osmometer (Camlab).

Fitting of bead optical density measurements. Fitting of the data presented in Fig. 2A was performed 
in the Matlab31 environment utilising the built in curve fitting tools. Data was first trimmed to remove points 
where the spectrophotometer had saturated then fitted as a 2nd degree polynomial with robust fitting using the 
bisquare method. The polynomials found are presented in Supplementary Table 4. These polynomials were then 
solved for OD =  0.05, 0.1, 0.5, 1 and 10 to give the traces presented in Fig. 2C.

E. coli cell concentration monitoring during growth curves. In order to determine C during batch 
culture growth, cells were added to 10 ml of the experimental media, which was then divided among 30–60 wells 
of a 96-well plate. The cells were grown at 37 °C and OD measured every 7.5 min. When an increase in OD above 
the baseline was observed sampling for C began, with each new sample taken from a separate well. For all growth 
curves at least 8 wells were left untouched to provide a complete growth curve for comparison. In the rare cases 
where the growth curve deviated significantly from the average, those traces were excluded from all measure-
ments. 125 µg ml−1 chloramphenicol was added to samples taken from the plate to arrest all cell division and 
growth. Samples were then imaged under brightfield illumination and N counted manually to determine C for 
each time point. At OD >  0.2 samples were diluted in the culture medium to reduce cell overlap in the slide. For 
Fig. 4 the two data sets were aligned by using a least squares method to determine the scales of both axes, mini-
mising the sum of: − Y( )Y

c OD
2chase  where c is the scaling factor. For Supplementary Figure 5 solid and dashed fits 

were produced using 1st and 2nd degree polynomials respectively. The fitted region for each was selected by 
expanding sequentially from zero until the fit quality started to drop.

Refractive index measurements. E. coli cells (strain MG1655) were grown in LB to OD =  0.3, spun 
down and concentrated 33.3×  before being subjected to sonication to lyse the cells. This cell lysate was diluted to 
0.0625× , 0.125× , 0.25× , 0.5×  and 1×  concentrations and the refractive index measured. The original cell extract 
was counted as above to determine the concentration of cells before lysing. DNA was obtained as 23-mer prim-
ers (Sigma-Aldrich) suspended in ddH2O, with concentration measured using a NanoDrop (ThermoScientific). 
Refractive indices of solutions were measured in a manual refractometer (Bellingham and Stanley, London). 
Sucrose data was obtained from a standard brix index32.

Raw data. Raw data generated as part of this work is available at http://datashare.is.ed.ac.uk/han-
dle/10283/2063 (Figs 1, 2 and 3) and http://datashare.is.ed.ac.uk/handle/10283/2064 (Fig. 4).
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Supplementary Information for “General calibration

of microbial growth in microplate readers”

Keiran Stevenson, Alexander F. McVey, Ivan B. N. Clark, Peter S. Swain and Teuta Pilizota

Supplementary Figure 1: (A) Measurements taken of the same sample in five different spectropho-
tometers. Different spectrophotometers of the same make give the same OD reading, while those pro-
duced by different companies measure OD that varies significantly. (B) Calibration performed for spec-
trophotometers used to obtain growth curves in this work. Calibration was performed using the same
plate prepared with a culture of E. coli grown to mid-log phase in LB with dilutions as in main text. We
report dilution on the x axis to remove uncertainty in determining real concentration. The BMG spec-
trophotometer provides a path length correction for the Beer-Lambert law (BLL) by default, correcting
the OD to that which would be observed by a 1 cm deep well assuming pure absorbance measurements.
All E. coli measurements were performed in the BMG Spectrostar Omega with path length correction on
(red) and yeast measurements were performed in a Tecan Fluorescent spectrophotometer (blue). Con-
version factors between the Tecan and BMG were calculated from the data as 1.74±0.02 and 2.75±0.03
for non corrected and corrected readings respectively (Methods: OD measurements).
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Supplementary Figure 2: OD measurements of E. coli samples of different concentrations using
different wavelengths. BW25113 Keio collection parent strain was used for this purpose. High concen-
trations (dark) to low concentrations (light) are indicated with the gradient scale. High concentrations
are seen to increase in OD as λ decreases showing the nonlinear dependence of λ on OD. OD measure-
ments on cell expressing fluorescent proteins should include careful choice of wavelength, as absorption
caused by the presence of fluorescent proteins can lead to overestimate of cell concentration [1].

Supplementary Figure 3: Selected brightfield images of beads used in Figure 2. A: 15.7±1.4 µm
B: 10.0±0.6 µm C: 3.00±0.07 µm D: 0.96±0.07 µm and E: 0.51±0.01 µm. Scale bar given in E applies to
A-E.
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Supplementary Figure 4: Growth curve of E. coli sample grown in LB from which the calibration
curves for Figure 3 were taken. Mean (black) growth and standard error (grey) was calculated from 10
wells of 300 µl. Cultures of mid log (black), early stationary (blue) and late stationary (red) bacteria
were removed at times indicated by the respective vertical lines.
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Supplementary Figure 5: C vs OD for growth conditions in Figure 4A and C. Solid and dashed lines
represent linear and second degree polynomials fitted to the data (see Methods according to the Beer-
Lambert Law and scattering theory prediction by Koch [2] respectively. The MM9 (orange) calibration
is a parabola as expected [2] (with the exception of the last point obtained when cells started to change
size to smaller), however LB+amp (green) calibration shows significant and nontrivial deviation.
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Supplementary Figure 6: Growth rates of E. coli were calculated from time derivatives [3] for (A)
glucose only media and (B) LB supplemented with 9 µg ml−1 Ampicillin. Growth rates are calculated
from both the OD600 growth curve (black) and the cell concentrations (Orange and Green) presented in
Figure 4A and C in the main text. The small difference between maximum growth rate obtained from
OD and C seen in (A) results from smaller number of time points obtained for C.
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Supplementary Figure 7: Bead concentrations plotted against the resultant OD for 1.0 µm beads in
the presence of sucrose. The index of each trace is nm = 1.333; 1.339; 1.344; 1.353 and 1.368 respectively,
with increasing brightness of green representing a higher refractive index of media (nm). Arrow indicates
increasing refractive index of media.
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Supplementary Figure 8: Variation in refractive index of LB media as a function of the concentration
of lysed E. coli cells present. Cell concentrations are measured as outlined in Methods before being
lysed and added to LB. nm varies only slightly, even at the highest fractions of intracellular material.
In contrast, adding sucrose to ddH2O (purple) produces a far larger variation in nm.
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Supplementary Figure 9: OD measurements of 1 µm beads of known concentrations and volumes of
100 µl, 200 µl and 300 µl performed in the BMG Spectrostar spectrophotometer used in this paper. The
volume of solution occupies 1

3×, 2
3× and 1× the total volume of a single well respectively. The BMG

Spectrostar corrects the measured OD using a built in path length correction based on the Beer-Lambert
law. However, the measurements for the three volumes do not overlay one another as would be predicted
by Beer-Lambert law. The difference between volumes of solution is large for high values of OD, but is
also present at OD < 1 as shown in the inset, with the OD of the fully occupied well being higher than
those partially filled [4].
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Supplementary Table 1: Scattering approximations and their dependency on the radius of the scat-
terer (r), wavelength of incident light (λ) and refractive indices of the scatterer and the media (np
and nm) respectively. n is the relative refractive index between the scatterer and the medium (

np
nm

).
Abbreviations: Scatt.: scatterer, sph.: spheres, arb.: arbitrary geometry.

Approx. Scatt. Regime Dependence on N , λ, n and r

Rayleigh sph.
r � λ; (

np
nm

)4
Nr6

λ2
[5]np

nm
r � λ

Rayleigh-
rods

| np
nm
− 1| � 1; (

np
nm

)4
Nr2

λ2
[5]

Gans-
Debye

r|np
ns
− 1| � λ

Jöbst sph.
2πr
λ
� 1; (

np
nm

)4
Nr4

λ2
[6]

r � λ
λ2

van de
Hulst arb.

|( np
nm

)2− 1| � 1;
Nλ

r(
np
nm

)2
sin( rλ (

np
nm

)2) + Nλ2

r

[1−cos( rλ (
np
nm

)2)]

(
np
nm

)2
[7]

(Anomalous
2πr � λ

Diffraction)

Mie sph. r � λ N
[
λ
r2 + λ

r2 (
np
nm

)4
]

[6]

Hart-
sph.

1 < (
np
nm

)2 < 1.5 Nr2

λ2

[(
np
nm

)2−1]2

(
np
nm

)2

[
(
np
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)8 + (
np
nm

)4(λr )2 + (λr )4
]

[6, 8]

Montroll 0.25λ < πr < 3λ

Perelman arb.
|( np
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)2 − 1| � 1
N

np
nm

( rλ )5((
np
nm

)4 − 1)2 [6]
2πr � λ
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λ
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Supplementary Table 2: Selection of refractive indexes collated from differ-
ent literature sources. Mostly bacteria and yeast are given, but we also include
some other biological samples for completeness.

Bacteria Refractive index Conditions

E. coli

1.3324 λ =600 nm [11]
1.382 minimal absorbance method [12]
1.387 immersive refractometry [12]
1.388 index matching [13]
1.395 λ =589 nm [14]
1.397 λ =589 nm [15]

1.406± 0.003 λ =589 nm [16]
E. coli DH1 1.382 λ =350 nm [17]

E. coli cytoplasm 1.390 immersive refractometry [12]
E. coli cytoplasm and nucleoid 1.382 immersive refractometry [12]

E. coli nucleoid 1.371 immersive refractometry [12]
E. coli cell wall 1.4 λ =520 nm [18]
E. coli protoplast 1.35 λ =520 nm [18]

Bacillus cereus
1.386 λ =520 nm [18]
1.3865 λ =542 nm [19]
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B. cereus var. mycoides 1.4000 λ =542 nm [19]
B. cereus spores 1.521 λ =542 nm [19]

B. cereus var. mycoides spores 1.528 λ =542 nm [19]
B. megaterium 1.3880 λ =542 nm [19]

B. megaterium spores 1.537 λ =542 nm [19]
B. subtillus 1.446 index matching [13]

C. oligotrophus
1.365 λ =350 nm [17]
1.371 minimal absorbance method [17]

Lactobacillus bulgaricus 1.404 λ =589 nm [20]
Marinobacter articus 1.371 λ =350 nm [17]

Micrococcus lysodeikticus 1.399 λ =589 nm [16]
Proteus vulgaris 1.385 immersive refractometry [21]
Sarcina lutea 1.396 immersive refractometry [21]

Serratia marcescens 1.387± 0.001 λ =589 nm [16]
Staphylococcus aureus 1.413± 0.002 λ =546 nm [16]

Streptococcus haemolyticus 1.392 immersive refractometry [21]
Streptococcus faecalis 1.37 immersive refractometry [22]

Other
Yeast - nucleus 1.36-1.39 λ =633 nm [23]
Yeast - cell wall 1.53 Theoretical calculation [24]

Lipid 1.50 approximate as oil [25]
Mitochondria 1.40 λ =632.8 nm [26]

Mitochondrion - resting 1.43 theoretical calculation [27]

Mitochondrion - respiring
1.50 membrane and matrix [27]
1.35 intramembrane [27]

Microtubules 1.512 index matching [28]

HeLa Cells
1.33-1.39 λ =633 nm [23]

1.385± 0.001 λ =632.8 nm [29]
1.3716± 0.0035 λ =632.8 nm [30]

HeLa - nuclei
1.3554± 0.0031 λ =632.8 nm [30]
1.3528± 0.0035 mechanically isolated [30]

HL60 (Human
1.3776± 0.0046 λ =632.8 nm [30]

myelocytic Leukemia Cells)
HL60 - nuclei 1.3582± 0.0030 λ =632.8 nm [30]

Jurkat (leukemic T-cells) 1.3671± 0.0052 λ =632.8 nm [30]
Jurkat - nuclei 1.3610± 0.0037 λ =632.8 nm [30]

MCF7
1.3713± 0.0048 λ =632.8 nm [30]

(Human breast cancer cells)
MCF7 - nuclei 1.3554± 0.0031 λ =632.8 nm [30]

Human plasma proteins 1.60 λ =589.3 nm [31]
Plasma β-lipoprotein 1.514 λ =589.3 nm [31]
Human ribonuclease 1.630 index matching [32]

Human β-lactoglobulin 1.594 index matching [32]
Human Pepsin 1.603 index matching [32]

7



Supplementary Table 3: Refractive index of solutions containing components that may be released
during growth (particularity when grown under sublethal antibiotic or any other stress concentrations)
as measured by a refractometer. The maximum concentration of extracellular DNA that could be
released during normal growth is estimated to be 7.45 µg ml−1 given by: concentration of cells × size of
chromosome ×mass of base pair / Avogadros constant. Assuming lysis of all cells from the maximum cell
concentration observed during our experiments the concentration can be calculated as: 1.5× 109ml−1×
4.6M bases×650/6.02×1023. The small difference between the refractive index of H2O and extracellular
bacterial DNA is negligible meaning bacterial cell lysis will not noticeably effect the calibration curve.

Solution Refractive index
H2O 1.335

802.8 µg ml−1 23-mer primer DNA 1.335
1099.4 µg ml−1 23-mer primer DNA 1.336

LB medium 1.338
Cell Lysate (grown in LB then sonicated) 1.341

Supplementary Table 4: 2nd degree polynomial fit parameters obtained using the curve fitting
tools available in the Matlab environment [33]. For each sample, the equation was solved for OD =
0.05, 0.1, 0.5, 1 and 10 and plotted in Figure 2C.

Sample Equation R-squared

15 µm beads 4.21× 109OD2 + 1.63× 1011OD + 7.64× 109 0.995105

10 µm beads 4.17× 108OD2 + 4.17× 108OD + 2.62× 108 0.988257

3.0 µm beads 1.80× 106OD2 + 1.52× 107OD + 6.60× 106 0.972179

1.0 µm beads 8.82× 105OD2 + 1.19× 106OD + 1.28× 106 0.981168

0.5 µm beads 2.05× 105OD2 + 4.70× 105OD + 2.35× 105 0.991838

Supplementary Figure 10: Schematic outlining parameters used in the derivation of the Beer-
Lambert Law (BLL). A beam of intensity I0 enters the sample perpendicular to area, S. As the sample
passes through a thin slice of the sample (dz) the intensity has reduced from Iz to Iz − dz and having
passed through the length of the sample (z) the intensity has reduced to the transmitted intensity (IT ).
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Supplementary Note 1: Beer-Lambert law derivation

Consider a beam of parallel, monochromatic light with intensity I0 striking a sample of area, S
perpendicular to the surface (Supplementary Fig. 10). The light travels through the sample to a
depth of z, after which the intensity is reduced to IT . An infinitesimally thin slice of the sample, dz
contains M molecules, such that

M = CSdz (1)

where C is the number of molecules per unit volume. Each molecule has a cross-section σ meaning
that the fraction of light absorbed due to a single molecule of area s is σ

s . Therefore, the total
cross-sectional area from all the molecules in the block is given by

CSdz
σ

s
= Cσdz (2)

If we compare the intensity of light entering this thin slice (Iz) with the intensity of light that exits
(Iz − dIz) we find the fraction of absorbed light Ia is

Ia =
dIz
Iz

(3)

The sum of Ia through all the slices of the sample is proportional to the sum of all cross-sectional
areas for all molecules in all the thin slices (Eq. 2). Integrating Eq. 3 we have:

∫ IT

I0

dIz
Iz

= −
∫ Z

0

Cσdz (4)

which can be rewritten in its common form as the Beer-Lambert law (BLL)

ln

(
I0
IT

)
= CσZ (5)

When BLL is applied to OD measurements σ is the cross-section of the bacterium; z the distance
the light travels through the sample, I0, the intensity of light incident on the sample and IT is the
intensity of light transmitted through the sample and related to the OD through the expression:

OD = CσZ − log(I0 ) (6)

Supplementary Note 2: Multiple Scattering considerations

As the concentration of bacteria increases, the possibility of multiple scattering, where light is scat-
tered off more than one bacterium, increases due to the closer packing of the bacteria within the
sample (Figure 1B, main text). Subsequently, these multiple scattering events start to contribute
significantly to the measured intensity of light at the detector.

For particles larger or comparable to the wavelength of radiation a correction factor for multiple
scattering events can be added to the BLL using the small-angle approximation. This takes the form
of correction factor CF [34–41]

CF (z, σ) =
∞∑

m=1

(
√
2

w0
z)m

m!

1− S(m)

1− exp
[
− w0r√

2
r2d

] (7)

where m is the number of scattering events the light has undergone and mmax = ∞, r the radius
of the scatterer, w0 the beam width of incident light, z the distance between the light source and
detector, rd is the distance between the two scattering events and S(m) is the integral over all
particles and scattering events that occur before the light enters the detector and is defined as

S(m) =

∫ 1

0

. . .

∫ 1

0

ds1 . . . dsm exp

[
−
√
2

w0
r2d

1 +

√
2

w0
z2

α

∑m
i=1 s

2
i

]
(8)
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where α is the polarisation of the scattered light and sm is the number of scatterers the light interacts
with [34–41]. CF increases the power measured at the detector when multiple scattering occurs.

The inclusion of the above corrections allows calculation of the effect multiple scattering events
have on the intensity of light on the detector (ID), but with limitations and at a cost.

CF (z, σ) is nonlinear with N , since CF is obtained by integrating over the area of each individual
scatterer (sm), an increase inN will lead to a reduction in rd and increased probability ofm increasing.
Initially, as N increases CF (z, σ) also increases. But, for multiple scattering events where a single
light beam is scattered many times, CF (z, σ)→ 0. In this regime N is so large that all light entering
the sample is constrained by photon diffusion and no light is directly transmitted to the detector.
Consequently, ID → 0 meaning that OD becomes very large. In the case of low density samples,
CF reduces to single scattering theory and the BLL holds. In the multiple scattering regime CF is
significant and has been shown to increase ID by 50 % for particulates in fog at the small value of
m = 2. [41]

However, in order to apply the correction factor to OD measurements it is necessary for the user
to know both m and N . Thus, in order to measure N accurately using a spectrophotometer, N
needs to be accurately determined by another method. Furthermore, since the forward scattering
contribution to the power incident on the detector is highly dependent upon the geometry of the
scatterer as well as the density and absorption; the degrees of freedom within the system require
calibration of the OD vs cell number measurements independently.

Other considerations

In the above calculations we have made two assumptions that should be noted, the sample is static
over the time period of a measurement and the sample is not heterogenous in geometry.

Static vs Dynamic

Unlike dust particles, crystal structures, water droplets or colloidal solutions, for which many of these
approximations were originally derived, bacteria are motile. Dynamic samples can add additional
complexity to solutions of scattering (see [42] for a recent discussion or [43] for a more rigorous
review). Often, OD measurements are conducted in rich growth media (LB or defined rich media like
EZ Rich [44]) where samples are not nutrient limited leading to reduced production of flagella and
therefore limited motility. In this case it is safe to assume that samples undergo only diffusion during
measurement of ID. However, if the growth conditions deviate from optimal, the bacteria become
motile [45]. To estimate the effect on motility we take the case of E. coli and previously reported
swimming speed of 20 µm/ sec [46]. At this speed E. coli will only have traveled 0.2 µm (or less than
half the body length) in the time it takes a 50 Hz platereader to acquire a single OD measurement,
and we can still assume a static sample. However, the effect of swimming should be re-evaluated for
cases where it might play a more significant role, for example smaller and faster bacteria.

Heterogeneity of the geometry

The effect of heterogeneity of a sample can be discounted for samples with dimensions D � λ (e.g.
yeast), however we have shown that it is more important in bacterial cultures where D ≈ λ. In
conditions where heterogeneity in bacterial geometry does not change throughout the growth cycle
of the culture it is sufficient to perform one calibration curve (Fig. 3). But, in cases where the
heterogeneity of the sample does change, even if the bacteria sizes do not (for example bigger and
smaller bacteria are present where the ratio of the two changes through the growth cycle), OD is no
longer suitable for estimated of bacterial number density and direct counting should be performed.

Volume of sample in the well

There is a positive correlation between the volume of sample through which light travels and the
probability of multiple scattering events occurring that is not necessarily in accordance with the BLL.
In order to determine the effect of differences in the volume size on the calibration, we measured OD
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for solutions of 1 µm diameter beads at known dilutions from manufacturer concentration 1.8× 1011

ml−1 for 100 µl, 200 µl and 300 µl volumes of solution in a plate reader well (Supplementary Fig. 9).
The maximum volume of solution (300 µl) corresponds to the maximum volume the plate reader

well can hold (l = z), meaning the smaller volumes correspond to z/3 and 2z/3 respectively. The
BMG Spectrostar spectrophotometer performs path-length correction to the measurements by apply-
ing the BLL approximation. For cases where the BLL is satisfied, the measured calibration curves for
varying l would collapse to a single line. Supplementary Figure 9 shows that, unlike for absorbance
measurements, for turbidity measurements this is not the case. Instead, variation in l leads to sig-
nificant deviation between the three lines as the concentration of the solution increases. Deviation
at high concentrations is as expected, with OD saturating quickest for l = z. At low fractions of
manufacturer concentration, the three curves still do not fully collapse to a single line (inset) with
OD being higher for l = z compared to l = z

3 and l = 2z
3 . While this effect is pronounced, for

most plate reader experiments, it can be neglected provided the volume of the sample in each well
is kept the same and that the volume does not change significantly throughout the duration of the
experiment (e.g. evaporation of the solution is prevented or minimized).

OD at transitions between different scattering regimes

To best determine the limits of the single, multiple and photon diffusion scattering regimes, it is
useful to consider the fraction of the total volume of the culture occupied by scatterers (ρ) rather
than C, and several previous studies have evaluated the applicability of different scattering theories
with respect to ρ [47–50]. From these, single scattering theory is applicable for volume fractions of
ρ ≤ 0.001 [49,50], the multiple scattering regime is satisfied for 0.001 ≤ ρ ≤ 0.2 [47,49] and for higher
values (ρ > 0.2), photon diffusion limit is reached where statistical approaches are best suited [47–50].
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Chapter 3 3.3. Neural network for brightfield cell counting

3.3 Neural network for brightfield cell counting
3.3.1 Introduction
Motivation

Given the difficulties in using optical density measurements in the previous
chapter, it became evident that we would need to perform calibrations for every
condition I test and for each new spectrometer used. In order to help facilitate
this process I looked to develop a method to streamline the calibration protocol
from the previous chapter. Since the cell counting takes the longest time to
perform manually I set out to automate the process.

While I initially attempted to use a simple image analysis program, a number
of difficulties emerged as the bacteria would change from bright on dark, to dark
on bright as the z-stack progressed. Sometimes both conditions were in the same
image and therefore cells would fail to be detected as demonstrated in Fig. 3.9.
Any dirt or debris on the microscope or distortion from uneven illumination
would cause false identification as well. So I made the decision to construct a
more robust image analysis system, that could also be more easily applied across
my conditions and potentially even other microscopes.

(a) (b) (c)

Figure 3.9: a) Example brightfield image under the best conditions: image is
cropped to a small area with relatively even illumination and high contrast cells
present in field. b) image from (a) using a black threshold. c) image from (a)
using a white threshold. Both thresholds were chosen to highlight the largest
area of cells with minimal background. Note the false halos present around cells
that are not detected due to the diffraction rings from out of focus bacteria and
the black region present in the lower right of (c) due to slight imperfections in
field illumination. Halos are often the same area as cells, particularly those with
their poles presented to the field of focus, and interfere with further processing
using tools such as edge or blob finding.

To do so I chose to construct a neural network for the image analysis as
they are generally more fault tolerant than deterministic algorithms and can be
easily scaled using multi-core computer systems or graphics cards to accelerate
the computation time without requiring heavy knowledge of programming.
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Chapter 3 3.3. Neural network for brightfield cell counting

Figure 3.10: A simplified neural network that takes two inputs and produces an
output. A single neural node consists of a trainable weight, a sum or multipli-
cation node and an output function. In this case two neural nodes combine the
inputs to produce a single output. The weight layers are trained, while the other
layers are fixed when defining the structure of the network

Neural networks
A simple neural network is shown in Fig.3.10, which would take two input

values and produce a single output. The most common output function for com-
putational neural networks is the ReLU (REctified Linear Unit) output function,
where the output is zero for inputs that sum less than zero, and equal to the
inputs when greater, allowing for a reduced computational load when running
large numbers of nodes at once. Training the network involves inputting data
and comparing the output to a known good value before adjusting the weights
(Wn) and testing the network again. The network is considered trained and use-
ful when the weights are adjusted so that the input values are converted to the
desired output value. Once trained a network can be stored and executed without
further modification of the weights, allowing consistent analysis or processing.

For a network architecture I chose to implement the u-net architecture de-
veloped by Brox et al. [124] in Keras with Tensorflow as a backend [125]. This
network allows for a significantly reduced memory consumption and faster compu-
tation than the traditional convolutional neural network. Memory consumption
is a significant limitation with our data, as the images being processed are 1024
by 1024 pixels wide and composed of 16-bit integers and therefore will consume
around 30 MB of memory alone. This is then compounded as the network con-
volves the image with multiple filters simultaneously and increases the volume of
information in memory exponentially.

The final network consists of 70,345 trainable parameters (W values) and 672
fixed parameters.

The learning function, Adam, was chosen based on reports of its well defined
behaviour for simple networks and low memory requirements which is a useful
attribute given the high memory usage of convolutional networks. While another
algorithm may be more optimal, training the model for longer is not a constraint
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(a) (b) (c)

Figure 3.11: Selected training images from training set. a) Brightfield image close
to focus on cells with high contrast. b) Training answer image for image in (a)
with cells coloured in white. c) image from far end of z-stack where (a) came
from, where focus is approximately 7 µm above (a).

for our application since I intended to train it once and then use a fixed version
for all data analysis. The function is a first-order gradient based optimisation
algorithm designed for stochastic objective functions [126] and requires a few
parameters, most importantly a learning rate (which I chose as 0.001) which
defines the size of the steps the algorithm makes in attempting to reduce the
error function of the neural network. The networks error function is defined in
equation 3.8 where it compares the networks predicted binary image with the
answer binary submitted. The Adam algorithm then attempts to optimise this
error function by manipulating the weights of the neural network over many
iterations.

error =

npix∑

0

(prediction− answer)2 (3.8)

3.3.2 Network training and verification
Production of training images

In order to train the network a set of training data must be constructed
consisting of a set of sample images and the corresponding answer key. For an
image segmentation algorithm with two possible categories, cell or not cell, a
binary image is used as the answer key. To produce training images, I prepared
a tunnel slide and imaged cells as described in methods 2.3. From the video I
identified a frame where the cells were most in focus on the surface of the slide
(Fig 3.11a) and processed the image by hand, to create a single binary image
with cells located in white as in Fig.3.11b. Since the z-stack occurs in a short
timescale, the cells do not move between each slice taken and therefore the answer
key created from the in plane cells can be used for slices that are less in focus. I
chose a set of 15 slices representing a ±7 µm depth around the focal plane. I chose
to include images from multiple conditions, both low osmolarity, high osmolarity
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Figure 3.12: Training history for the first 100 epochs of network training. Blue
line represents the accuracy when presented with training images and the orange
line is the accuracy when presented with unseen data. The accuracy is calculated
as the normalised fraction of correctly categorised pixels.

in sucrose and NaCl and finally a series of images with no cells present. This was
to ensure that any changes in cell appearance due to medium changes, and the
background of the microscope would be accounted for by the neural network.

Once a selection of images had been selected from the real world data they
were converted from .TIFF to .PNG files in order to save computer memory while
loaded.

Network training
The network training is primarily handled by handled by the Keras package

as described here https://keras.io/ [127]. In brief: the package loads all the
training images and their respective answers, a subset of images is set aside for
verification and the rest of the images are shown to the network one by one for
training. Between each image the output of the network is compared to answer
image and the weights of the network adjusted based on the training algorithm.

Each complete run through of the training set is known as an epoch, and
between each epoch the network is tested against the verification dataset so that
images it has never seen are checked to determine if the network has actually im-
proved instead of learning the answers to the training set only. If the verification
accuracy is lower than a previous epoch, all training for that epoch is discarded.

The network can be trained for a specific number of epochs or until a particular
accuracy is met, in the case of my network it was run for 300 epochs. The
accuracy values for the first 100 epochs is present in Fig. 3.12, demonstrating
improvement with each epoch with diminishing returns over many iterations.
Test accuracy is always lower than train accuracy as the network has never seen
the test data and is limited both by its own complexity (a network with more
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parameters can fit a wider range of inputs) and the amount of training data it
has observed. The significant drops in accuracy with the test data indicate poor
training or overtraining on the data, where the network produces the correct
answer image without actually learning to interpret them correctly. In these
cases the modifications to the network are discarded and another round of training
begins from the previous good set.

Once trained, the network produces binary images where the cells are iden-
tified. From these images the centres of mass of each blob are determined by a
determinant of Hessian blob finding algorithm [128], using the following parame-
ters: max sigma=200, min sigma=25 and overlap=0. This generates the centres
of masses of every blob, in each frame in the z-stack. A clustering algorithm, in
this case a DBSCAN algorithm [129], must then be used to identify clusters as an
individual cell will be identified in multiple consecutive frames with only small
amounts of x-y drift. The DBSCAN was performed with an distance function
equal to 30 and minimal cluster size of 3, which were chosen after several ma-
nual iterations based on known good data, an example output is provided in Fig.
3.13. Finally, the number of unique clusters is used as the total cell count for the
sample.

When operating on a GTX1080 GPU (nVidia) and with Tensorflow v1.13 the
network can process a single image in approximately 0.09 sec which would allow
its use in real time on microscope images if desired. Such application could be
useful for segmenting fluorescent cells for determining volume or other parameters
while an experiment is taking place instead of in post processing.
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Figure 3.13: Sample input data to the counting algorithm, restricted to a 6µm z
distance around the focal plane for clarity. Top images, left: microscope images
input for analysis, right: neural network binary output with determined cell
centres of mass as red spots. Lower image: final output of the network and cell
counting algorithm; a 3D map of cell centres of mass. Each colour represents a
different identified cluster and therefore cell (n=18) with the single black marker
on the left indicating a false positive excluded by the clustering algorithm and
therefore the count. Gaps around the 4th z slice are a result of cells being in
focus and losing contrast below the networks detection threshold.
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Chapter 4

Industrial ethanol production

4.1 Model of industrial ethanol production to

calculate potential cost savings
4.1.1 Motivation

Since the goal of this project is to determine if the osmoregulatory network can
be used to improve the ethanol production from syngas used in an industrial plant,
I constructed this simple mass balance model with the goal of understanding
how changing the parameters of growth and ethanol resistance would affect the
production costs of ethanol. The mass balance model is based on a simplified view
of an industrial ethanol production facility designed around the IneosBio process
which uses syngas to provide the carbon source [28] and microbial fermentation
to convert it to ethanol [130]. The overall process is more completely described
in section 1.2.

4.1.2 Model components
Syngas

For the sake of cost calculation, we will take the IneosBio method of syngas
production as the default; gassification of plant material using steam in an ana-
erobic environment [18, 28]. Combined with further processing to remove excess
CO2, this will produce syngas with a carbon monoxide concentration of about
80% by mass [16]. In addition the I estimated cost of producing this syngas at
around 0.05$ per m3 [131] however more exact values are difficult to obtain due
to the close guarding of industrial patents and values. However, this value will
not be altered during this modelling exercise and therefore an approximate value
can be reasonably used.

Biological growth
The bacteria in the fermenter convert the dissolved syngas, which is primarily

CO at this stage, into biomass and ethanol. The conversion efficiency of the
microorganism is quoted as the percentage of a mole of CO converted to ethanol
instead of biomass or other byproducts. From the patent literature, we find
that the conversion efficiency for the IneosBio industrial strain of C.ljungdahlii is
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86% [28] by mole, therefore, the moles of CO required to produce 1L of ethanol
is:

NCO =
(ρE/ME) ∗KE

(kCO)
(4.1)

Where kCO is the molar conversion efficiency, ρE is the density of EtOH, KE is
the stoichiometric conversion ratio of EtOH to CO, and ME is the molar mass of
EtOH. Substituting in:

119.485moll−1EtOH =
(0.789 kg l−1/0.046 07 kg mol−1) ∗ 6

(0.86)
(4.2)

Since the generation of ethanol is a direct result of the bacterial metabolism we
can assume that the majority of the heat produced in the bioreactor is as a result
of this process. From the stoichiometry we know that this releases −224 kJ mol−1

as heat, either directly or as a result of subsequent reactions, we can calculate
the minimum heat production of the bioreactor as:

Er =
ρE
ME

∗∆H (4.3)

Substituting in:

3836.2kJl−1EtOH =
0.789 kg l−1

0.046 07 kg mol−1
∗ 224 kJ mol−1 (4.4)

This does not take into account additional heat from the input of of syngas,
the mechanical stirring devices or the conversion of other compounds from the
medium and as such it is purely a minimal requirement.

Fermenter cooling
To cool the reactor, most plants will use locally available water sources and a

heat transfer system to allow for cheap and efficient cooling. This water however
is not free due to the costs incurred in filtering and pumping the water through
the plant and as such the volume required needs to be calculated. Assuming that
the maximum heat transfer occurs, where the coolant reaches the temperature of
the reactor, the required volume can be determined by:

Vc =
Er

cwater ∗ (Tr − Tc)
(4.5)

Where Vc is the volume of coolant water, Tr is the temperature of the reactor,
cwater is the specific heat capacity of water and Tc is the temperature of the
coolant water intake.

Substituting in for a reactor of 38 ◦C and cooling water of 10 ◦C:

32.77 l l−1EtOH =
3836.2 kJ l−1EtOH

4.181 kJ l−1 K−1 ∗ (28 K)
(4.6)
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Figure 4.1: Separation energy of water-ethanol solution as a functional of ethanol
concentration over a physiological range. Energy ratio is the ratio between sepa-
ration costs and energy returned during combustion of the pure ethanol. Data
and figure obtained from [132].

Centrifugation and flash separation
Beer is taken from the fermenter and centrifuged to separate the cells. This is

usually accomplished via continuous methods such as centrifugation or filtration,
in the case of bacteria centrifugation is preferred due to the small size of the
bacterium. Following that, the beer undergoes a process of flash separation to
remove the excess carbon dioxide from the solution as it will agitate and foul the
distillation column. These processes are assumed to be of little cost relative to
the rest of the process as they rely on fluid pumps as the driving mechanism.
They are also unlikely to change with any of the parameters of interest as they
are dependent of the physical parameters of the fluid and cells.

Distillation
For distillation we calculate the energy requirements based on an ideal column,

that has a bottoms concentration of 0.4% and a product concentration of 90%
[30,33].

Edis = 33.041 ∗ c−0.949 (4.7)

Where c is the beer concentration and Edis is the energy requirement MJ for
producing 1 kg of 90% ethanol solution from a beer with ethanol concentration of
c percent. The final distillation of the 90% azeotrope and any further processing
of the ethanol/distillate is not included as it will not vary with our parameter
space.
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Figure 4.2: Outline of the theoretical bioethanol production process used in the
economic modelling and testing
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Economic Value Units Model value
Range 1yr Range 5yr
low high low high

Ethanol $/l 0.41 0.317 0.407 0.317 0.946
Fuel gas mmBTU 3.5 2.53 4.93 1.68 5.39
Medium $/l 0.2 [133]
CO2 $/ton 0
Cell mass $/ton 0

Table 4.1: The vales of sale and purchase of various components for the bioreactor
process. Where high variation is expected, in commodity products such as ethanol
and fuel gas the past ranges are also displayed in both the short and long term.
The values for CO2 production and cell mass are listed as 0 as while the model
has the values as variables, the market for cell mass is generally a local property
and no carbon tax for the production of CO2 from biological sources in the United
States or European Union.

Plant variable Units Model value
Cooling water cost $/ton 0.02
Cooling water temp ◦C 10
Medium makeup water $/ton 0.23
Fuel gas to steam efficiency % 90
Syngas cost $/m3 0.05 [131]
Syngas CO concentration % 80 [16]

Table 4.2: Values for plant variables used in the model, these values are fixed
throughout all experiments and represent an expected cost based on a large in-
dustrial scale plant.

Bioreactor key values Units Model value
Syngas CO conversion efficiency % 86 [28]
Reactor temp ◦C 38 [28]

Table 4.3: Model values for the bioreactor based on the patent literature of Scott
et al.

73



Chapter 4 4.1. Model of industrial ethanol production

Figure 4.3: Cost per litre of ethanol as calculated by the section of the plant
modelled in Fig.4.2 vs the ethanol concentration of the beer produced by the
bioreactor. The columns are coloured to represent the breakdown of the costs as
calculated. Biomass is not visible due to being set to zero for this simulation,
parameters used for simulation are listed in Table 4.1 & 4.2.

4.1.3 Sensitivity analysis
Beer Concentration

The most obvious property to change in this environment is the beer con-
centration coming out of the bioreactor. In reality this would be achieved by
improving the ethanol tolerance of the strain without affecting any of the other
parameters of the microbial growth. The results of modifying this single para-
meter are shown in Fig.4.3, where the greatest cost reduction is in producing the
steam to power the distillation column. This drops exponentially with an incre-
ase in beer concentration, as would be expected based on Fig.4.1. In addition
because less beer is needed to produce the same volume of ethanol per unit time,
the volume of medium required is reduced as well.

It is also evident that improving the bacterial tolerance gives diminishing
returns, however since the resistance of C.ljungdahlii is quoted around 2 to 5%
it remains within the sensitive region and therefore even a small increase should
save a significant amount of cost. E.coli, as shown in section 2.5 has a tolerance
already at 5.5% at 37 ◦C that can increase to 7.25% by reducing temperature to
25 ◦C is also within the sensitive region of the proposed model. Performing this
reduction in temperature would save approximately $0.06 per litre of ethanol,
while small this would be significantly amplified by the output of the plant.
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Figure 4.4: Beer concentration vs cost of ethanol production for different carbon
monoxide conversion efficiencies. The legend gives the conversion efficiency of the
simulated bacterium in percent, with the black line at 87% being the default for
the model.

Syngas conversion efficiency
The syngas conversion efficiency is another parameter of the bacteria that

could be altered by manipulating the osmoregulatory system. Since the conver-
sion of CO to ethanol is the primary metabolic pathway for the bacteria the
osmoregulatory network could be used to increase the energy consumption of
the bacteria without increasing the proportion of CO used for growth and thus
increasing the total conversion efficiency. The effects of attempting to alter the
metabolism are explored in Fig.4.4, where increasing the conversion efficiency re-
duces the ethanol cost per litre with diminishing returns compared to earlier. As
the conversion efficiency of C.ljungdahlii is already high (around 87%) and the
ethanol tolerance low (approx 3%) altering this efficiency is going to have very
limited cost reduction potential, only with around 0.01$ reduction per litre if the
conversion efficiency reaches 100% [26].

Increasing the conversion efficiency would also reduce the growth rate of the
bacteria, and therefore increase the pre-growth needed before the bioreactor re-
aches its full production capacity. It may also affect the maintenance of the
production rate, since bacteria get damaged by the stirring action of the reac-
tor, downstream processing such as centrifugation or contamination by external
agents and need to be replaced with freshly grown cells. Since this model as-
sumes the plant is already operating in a steady state and cell growth rates for
startup would be very particular to the plant setup, there is no reasonable way
to estimate the economic impacts.
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Figure 4.5: Reactor volume required to meet a production rate of 3170 litres of
Ethanol per hour (20000 tons per year at 8000hours of operation) at various beer
concentrations. Growth rate as proportional to the default model parameter is
indicated by the colours and legend.

Growth rate modulation
As has been mentioned before and is demonstrated with the temperature

modifications in section 2.5, it is important to consider the impacts that changes
to the growth rate have upon the model. Since the model ties the growth rate
of the bacteria directly to the ethanol production rate, changes to the growth
rate will have no effect on the ethanol cost per litre. Instead, the production
rate of the bacteria will influence the size of the bioreactor(s) needed to meet a
given production rate. This calculation is presented in Fig.4.5, showing the large
increases in bioreactor volume to meet the target production rate.

The largest bioreactors in use in industry are on the order of 800 m3 and
as such the production/growth rate of the bacteria requires that at least two
bioreactors be used to supply the rate of the plant. Since bioreactors are some of
the most expensive pieces of equipment to construct this means any significant
reduction in growth rate would lead to a large increase in capital cost for the
plant.

4.1.4 Conclusions for production
From the above graphs and sensitivity analysis it is evident that the greatest

route of study is the increasing of the ethanol tolerance of the bacterium. The
exact savings however would depend on the initial concentration of the beer from
the bioreactor, with lower concentrations seeing a more significant benefit for the
same level of increase. It is also important to avoid changes to the growth rate
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while achieving this as the increase in bioreactor volume (to maintain production
volume) required may offset any benefit gained.
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4.2 Characterising E.coli ethanol tolerance
In order to measure any changes to ethanol tolerance I first designed the proto-

col given in methods 2.5 to account for evaporation and provide consistent results
over multiple days with various strains and media. I chose to use a probabilistic
method of determining the lethal ethanol concentration, in a similar manner to
MIC calculations, rather than quantify changes to the growth rate or yield di-
rectly. This is because ethanol changes the refractive index of the medium upon
addition and as demonstrated in chapter 3.1 this would significantly affect the
interpretation of the cell masses within the platereader. Cell volume could also be
changing with the different conditions as it is known to change with growth rate
and stage of growth in the growth curve making calibration difficult. In addition
I found that addition of the ethanol caused many of the commonly used buffers,
such as those used in Chapter.3.2 where the cell number calibration is stable, to
precipitate the salts present both immediately and over time rendering reliable
reading of optical densities impossible.

4.2.1 Temperature dependence of ethanol tolerance
Due to an unexpected setting change to our platereader a sample was incu-

bated at a lower temperature than normal, 32 ◦C instead of 37 ◦C, I noticed a
significant improvement in the ethanol tolerance of our strain. I chose to charac-
terise the effects on our strain particularly the relationship between temperature
and the growth rate in order to quantify the trade-off between the tolerance and
growth rate and inform the later experiments. As is shown in Fig.4.6 there is
a significant increase in the ethanol tolerance, from 5.75% to 7.75% with a re-
duction to 25 ◦C. Since the ethanol production of C.ljungdahlii is linked directly
to the central metabolism its production will be proportional to its growth rate
and therefore be reduced with the decrease in temperature. In order to compen-
sate, as is demonstrated in Chap.4.1 the plant must be made significantly larger
to compensate and therefore is unlikely to be useful on its own.

4.2.2 Characterising medium supplementation on ethanol
tolerance

In an attempt to determine if osmotic agents would be useful at improving
ethanol tolerance by growing the bacteria in minimal medium supplemented with
osmolytes, specifically choline, proline and glycine betaine. This data is presented
in Fig.4.7a I attempted to understand the effect of supplementing minimal salts
medium with proline and choline. I also prepared LB with double the normal
concentration of components to see if the medium could be improved for ethanol
tolerance, Fig.4.7b. Unfortunately we saw no positive effects with either attempt
at supplementing the medium, and I was limited exploration of more complex
defined medium as salt based buffers and low solubility organic compounds are
easily displaced from the medium upon addition of ethanol. The precipitate
caused by this not only changes the concentration of the medium but prevents
any reading by the platereader as the beam path passes through the bottom of

78



Chapter 4 4.2. Characterising E.coli ethanol tolerance

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilty

 o
f w

el
l g

ro
w

th

Ethanol Concentration (%)

 37C
 33C
 30C
 25C

Figure 4.6: Temperature dependence of probability of growth of an inoculated
well. Temperatures displayed are 37, 33, 30 and 32 ◦C increasing temperature is
indicated by increasing red brightness. Error bars are the 85% Normal approxi-
mation interval calculated by the Wald method.
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Figure 4.7: The probability of a well growth vs the ethanol concentration for
a) M63 with glucose (black) supplemented with choline (red) and proline (blue).
b) Normal LB (black) and LB with double the usual yeast extract and tryptone
(red). Error bars are the 85% Normal approximation interval calculated by the
Wald method.

the well, and thus any precipitate interferes with readings.

4.2.3 Osmotic increase
To determine if osmoregulation provides a useful additional tolerance to bacte-

rium without any further modification to the bacterium I tried exposing the E.coli
to high osmolarity and then to ethanol. In order to make sure the cells were not
exposed to both an osmotic shock from the agent and the ethanol simultaneously
I first grew cells in medium of appropriate osmolarity and made frozen stocks
of the recovered and growing cells. After this the protocol outlined in methods
2.5 was followed to produce the data present in Fig.4.8. As can be seen, when
exposed to either sodium chloride or sucrose, the cells have a lower tolerance for
exposure to the same concentrations of ethanol. This probably indicates that
the osmolarity and the ethanol are both causing continuous stress on the cells as
they grow in line with previous research [87]. This is also supported by the use of
combination therapy techniques with antibiotics, where cell growth is inhibited
using several mechanisms simultaneously.

4.2.4 Ethanol tolerance of osmoregulatory knockout strains
To determine if any particular parts of the osmoregulatory network is essential

for ethanol tolerance in E.coli, I decided to test the ethanol tolerance of various
Keio collection single gene deletion mutants. Fig.4.9 shows the results of growth
of selected mutants with ethanol. While many of the mutants show next to
no difference compared to the wildtype or BW25113 (the Keio collection parent
strain [107]) the ∆proW strain shows a significant reduction in ethanol tolerance.
Since the proW gene is part of the ProU complex, responsible for transporting
betaines (glycine and proline betaine) into the cell in response to osmotic stress
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Figure 4.8: The probability of a well growth vs the ethanol concentration for
MG1655 at different osmolarities in the presence of sodium chloride (a) sucrose
(b). Increasing redness indicates increased osmotic concentration. a) osmolarities
are 0, 750 and 1500mOsm with n ≥ 3. b) osmolarities are 0, 450, 750 and
1500mOsm with n ≥ 6. Error bars are the 85% Normal approximation interval
calculated by the Wald method.

[93,134,135], betaines must be important to ethanol tolerance. This may be due
to the suggested protein stabilisation properties of glycine betaine [135].

4.2.5 Discussion
Ethanol and osmolarity have a number of similar effects on the cell membrane

and protein stability as discussed in the introduction 1.4. The aim of this chapter
was to quantify the ethanol tolerance of E.coli under varying media conditions as
well as test the tolerance of osmoregulatory mutants from the Keio collection. Of
interest, is the reduction of ethanol tolerance by the deletion of the proW gene
by almost 2.5% compared to the wildtype as demonstrated in Fig.4.9. This link
between ethanol tolerance and the ProU transporter system, of which ProW is a
component, is previously unreported link for E.coli. As a result we can infer that
osmolytes transported through this transporter must have a crucial role for the
ethanol tolerance of E.coli.

Since the primary osmolyte transported through this system is glycine be-
taine, we would expect that adding this osmolyte to otherwise minimal medium
would improve the ethanol tolerance. However, upon doing this as in Fig.4.7a
we see no improvement to the ethanol tolerance of the wildtype. It may be that
another osmolyte is at play here, such as ectoine, or proline betaine which are
also substrates for the ProU transporter however these are yet to be tested. Due
to the variation and complex environment of the LB medium it is unclear how
much of these compounds is present in the LB during the other experiments [62].

When I discovered the effect of changing the temperature of growth had upon
the ethanol tolerance, I felt it was important to characterise it completely. As
such I determined that the tolerance could be increased significantly, with an
increase from 5.75% to 7.75% by reducing growth temperature from 37 ◦C to
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Figure 4.9: The probability of a well growth vs the ethanol concentration for wild-
type (MG1655), BW25113 and Keio collection mutants for several osmoregulatory
proteins. Error bars are the 85% Normal approximation interval calculated by
the Wald method.
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25 ◦C. This effect was to be expected as the stability of proteins [99, 103] and
the lipid bilayer of the membrane are improved with a reduction in temperature,
along with a reduction in the solvent properties of the ethanol [85,95,96,136,137].

It did however provide a useful trade off, as reducing the temperature decre-
ases the growth rate of the bacteria by about half while improving the ethanol
tolerance. When this data is applied to the model given in section 4.1 we see an
improvement of $0.06 per litre of ethanol but the reduction in growth rate requi-
res a doubling of the bioreactor volume. This trade off is significant in terms of
capital cost despite the improvement in production costs.
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Chapter 5

E.coli physiology at high
osmolarity

As described in the introduction, the reduction in growth at high osmolarity is
not currently explained and therefore of interest to research. This would be useful
because if any improvements in ethanol tolerance were to arise from the use of
high osmolarity, then understanding reasons for the reduction in growth rate at
high osmolarity may help mitigate or improve this.

The work in the following chapter is based upon my hypotheses of why cells
grow slower a higher osmolarity. In brief, these are:

(i) the allocation of ribosomes to synthesising different components of the
osmoregulatory network will lower the number available to synthesis of new ri-
bosomes and cell construction machinery, section 5.1

(ii) transporters and enzymes consume energy or carbon source meaning that
there is less for building cells giving a reduction in cell yield, section 5.2

(iii) transport and synthesis of molecules to reverse the osmotic gradient in-
creases the concentration of components in the cytoplasm, which may limit the
movement (diffusion) of other molecules, section 5.3

I therefore intend to measure all three of these variables in the following
chapter, followed by including them in a coarse grained model to help provide
a more quantitative understanding of whether changes to these three variables
explain the reduction in growth rate.

5.1 Proteome allocation
It has been shown that the fraction of cell protein content that is made up

of ribosomes varys linearly with growth rate when growth rate is modulated
by altering the medium nutrient capacity (sometimes called nutrient quality)
[71]. While some measurements have been made to observe changes at high
osmolarity, there is some indication, as shown in Fig.1.6B and further discussed
in the introduction section 1.3.3, that the changes that occur at high osmolarity
are different than those that occur due to changes in nutrient quality. I therefore
set out to measure these changes myself, with the hope of integrating them with
my other measurements to produce a better overall understanding of the reason
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for reduced growth.

5.1.1 Ensuring exponential growth
In order to ensure good measurements for all experiments into the physiology

of E.coli it is important to ensure that all parameters are measured while the
cells are in the same phase of growth. The easiest way to do this is to grow
cells to a particular OD using the same protocol each time, however, since the
eventual goal is to create a model of the bacterial growth at high osmolarity, we
would like to understand where the limits of the model will be. Most bacterial
measurements are made in the mid-log phase of growth as determined by optical
density measurements but as is described in chapter 3.2 these measurements can
be misleading and as such do not tell us about the true state of the bacteria.

To determine if the bacteria are truely in a steady state, and for how long,
I decided to measure the protein concentration along a series of growth curves.
If the bacteria exist in a steady state for a period then the relationship between
optical density and protein concentration should be linear until the cells run out of
nutrients. When I performed these measurements, shown in Fig.5.1, I found that
the protein vs OD relation holds linear to a remarkably high optical density to
almost a value of 2. Above this OD the error rate of the protocol starts to climb,
producing more of a scatter of data. The reason for this is due to the precipitation
and centrifugation steps of the protocol, where small amounts of protein or cells
can be lost and therefore create an error between multiple samples and even the
calibration curve used to convert the absorbance to protein concentration.

Despite these difficulties, I determined that the bacteria are within a steady
state between an OD of 0.1 and 0.6 and thus all further measurements were made
within this range.

5.1.2 Verifying previously observed measurements of pro-
teome fraction

Since this investigation is based upon previously described data, and I intend
to use the Scott et al model to help interpret the changes to the E.coli physiology,
it was important to prove that I was able to replicate their results. This is further
necessary as the wildtype strain I use BW25113 may differ from the EQ2 strain
(based on MG1655) used in the previous work.

When I plot my data against the data from Scott et al in Fig.5.2 I see some
agreement with the slope of the line despite the significant error bars. This is in
contrast, however, to comparison of growth rates with my cells having a reduced
growth rate in RDM and an increased growth rate in all the M63-media. In
addition my data shows little change in the RNA/protein ratio when moving
from glycerol to glucose as a carbon source but while showing a more significant
change between the absense or presence of casamino acids. It is unclear why this
discrepancy exists as the genetic differences between strains do not overlap with
any of the primary carbon metabolism genes (with the exception of lactose and
arabinose which are not used in these experiments). Further experiments with
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Figure 5.1: Protein content as µg ml−1 vs the optical density at which the protein
content was measured for 6 different media as defined in section 2.1.3. Inset is a
magnified view of the data. Medium richness decreases down the legend.
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Figure 5.2: The RNA/protein ratio vs growth rate for the bacterial cells grown in
different nutrient media. Colours indicate the medium for both squares and dia-
mond data. Squares: Data from Scott et al paper [71]. Black triangles and grey
circles: historical data from Forchammer [138] and Bremmer [139]. Diamonds:
data from this thesis. Error bars are not given in historical data, bars on Scott
and this thesis data are standard error.

different strains and growth conditions may help shed light on this behaviour.

5.1.3 Changes to protein/RNA ratio at high osmolarity
Concurrent with the measurements above, I grew cells at high osmolarity

with sucrose and performed the RNA and protein measurements. I chose to only
perform the measurements in M63 medium with glucose as the carbon source due
to the high growth rate and low cost compared to the RDM and Glycerol media.

The data in Fig.5.3 shows a decrease in growth rate as well as RNA/protein
ratio as the osmolarity is increased with sucrose. As can be seen in the projection
on the back wall, in medium containing casamino acids (cAA)represented by light
blue spheres the decrease in RNA/protein ratio proceeds along the same line as
a decrease in nutrient quality in normal osmolarity. In minimal medium contai-
ning just glucose and salts (pink spheres) the RNA/Protein ratio is shifted down
relative to the line formed by normal osmolarity. While as previously mentioned
there is some error in the measurements, the points are shifted systematically in
two different ways rather than being randomly noisy. Assuming this difference is
real, it is interesting that the two media would produce different responses to the
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same osmotic challenge. I hypothesise that this may be due to the fact that casa-
mino acids contain organic osmolytes and therefore the cells grown in its presence
may require a smaller proteome fraction to adapt to changes in osmolarity.
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Figure 5.3: The RNA/protein ratio vs growth rate vs added osmolarity for the
bacterial cells grown in different nutrient media. Osmolarity was increased by the
addition of sucrose to the medium. Colours indicate the medium for both squares
and sphere data. Squares: Data from Scott et al paper [71] Spheres: data from
this thesis. The 0mOsm data is the same data set from 5.2 but error bars are not
given for clarity. (b), (c) and (d) contain the projections of the 3D data from (a)
along each axis.
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5.2 Cell yield at high osmolarity
Another important parameter for the growth of cells at high osmolarity is the

efficiency of the cell metabolism; specifically, how many cells you can get for a
given amount of nutrients. To measure this I started with the simple concept,
that I would grow cells in batch culture and determine the cell concentration
at the end of growth phase by counting in the microscope. Unfortunately when
attempting to count cells at this point, there was difficulty in determining the
cell number accurately, as can be seen in chapter 3.2 Fig.4A where cells continue
to divide but smaller when they enter stationary phase.

Instead I chose to perform optical density growth curves, looking for good
temporal resolution along the curve so that I can fit to obtain a more accurate
asymptote. This can then be converted to a true cell number using the calibration
method described in chapter 3.2.

5.2.1 Yield as measured by optical density
I measured the growth curves with the addition of both sucrose and NaCl as

shown in Fig.5.4. It should be particularly noted that the measurements given
are in osmotic strength and not molarity, i.e. sodium chloride is introduced at
half the concentration of sucrose. The growth rates of the curves decrease with
increasing osmolarity in the presence of both chemicals as well as demonstrating a
greater lag time before both. However it appears that sucrose has a much greater
effect on the yield, as the asymptote is almost 50% that of growth at normal
osmolarity when grown in the presence of 1000mOsm sucrose. It is worth noting
this reduction in asymptote is significant as many experiments are performed at a
particular OD, which is usually assumed to correspond to a given stage of growth
i.e. mid log. As the asymptote decreases a given OD would correspond to cells
at a later stage in growth, where cell size and other cell parameters may differ
and could be misinterpreted as effects of high osmolarity. This effect has been
noted in the literature such as by Shaevitz and Pilizota, 2014 [36] where they
demonstrated the previously observed reduction in cell size at high osmolarity
was an artefact of this growth stage shift.

5.2.2 Yield as measured by cell concentration
If you calibrate the data correctly using our method, as I have done in Fig.5.5

you can see that the optical density gives a very misleading appearance of the cell
counts. In the media examined, both sodium chloride and sucrose give a similar
reduction in cell yield over the osmolarities used, further exemplified in Fig.5.6.
The slight increase in yield at 600mOsm is most likely due to the preference of
E.coli for an osmolarity around 400mOsm, the osmolarity of LB, where our M63
is below optimal osmolarity as a minimal medium.

The decrease in yield indicates an increase in the cost of a producing cell at
increasing osmolarities in a manner that is independent of the osmotic agent ad-
ded. This is unexpected as sucrose and sodium chloride differ in charge, solubility
and their membrane permeability and therefore should probably have different
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Figure 5.4: Growth curves of BW25113 in M63 with casamino acids and glu-
cose with varying osmolarities of a) Sodium chloride and b) Sucrose. Error
bars are not displayed, data is the combined curves of at least 4 separate re-
plicates.Black: normal osmolarity medium; red; 400mOsm added,blue:600mOsm
added, green:1000mOsm added
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Figure 5.5: Growth curves from Fig.5.4 given now as cell concentrations.
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Figure 5.6: The cell concentration given at the asymptote of data in Fig.5.5
vs the measured osmolarity. Data calculated by fitting a modified Gompertz
equation [140] to the data in Fig.5.5 and error bars given as the 95% confidence
interval of the fit.

5.3 Diffusion constant changes at high osmola-

rity
The last variable I chose to investigate as a possible cause of reduced growth at

high osmolarity was the diffusion constant of particles (such as protein or RNA)
within the cytoplasm under steady state growth conditions. To do this I made
use of a protein fusion, µNS−GFP , which is formed from a viral capsid protein
attached to a GFP [141]. These proteins, when correctly expressed, form into a
single, fluorescent particle within the cell with its size controlled by the expression
of protein [109]. Since the intensity of the particle is correlated with the number
of GFPs and therefore the intensity can be used as a proxy for particle size. I
expressed these particles within the same strain as used in the previous sections,
and measured the radius of gyration of particles (described in section 3.1.6 and
methods 2.2) in the presence of both sucrose and sodium chloride, the results of
which are presented in Fig.5.7. A decrease in the radius of gyration is seen when
going from low osmolarity to high osmolarity in the presence of sucrose, where an
increase of 1 osmolal decreases the radius by approximately 50%. The radius in
sodium chloride however shows significant fluctuation over the range of particle
intensities observed. Based on the simulation results in section 3.1.4, further
experiments to improve the sample size may change the nature of these trends
and therefore the results should be considered preliminary, although potentially
interesting, at this stage.
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Figure 5.7: Radius of gyration for various intensities of particles in cells grown in
M63-Glu-cAA medium. Intensity of particle correlates directly with the particle
size and each point represents the mean of between 5 and 10 particles with the
bars representing standard error.

94



Chapter 5 5.4. Coarse grained model of growth at high osmolarity

5.4 Coarse grained model of growth at high os-

molarity
In order to integrate all of my results in a coherent manner, I decided to

use a deterministic cell model designed by Weiße et al [142] as a basis. This
model has a readily present energy variable and the ability to predict changes in
the proteome partitioning as a result of actions upon the cell and is therefore of
high utility as one of the major findings above is a reduction in cell yield at high
osmolarity, indicating a diversion of resources away from growth. To recap, I have
seen changes in diffusion constant, cell yield, growth rate and proteome fraction
as a result of growth at high osmolarity and thus I need to modify the model to
incorporate these different values. Below I have repeated the description of the
cell model equations with modifications for osmotic growth indicated in red. For
detailed derivation of these different equations see the original paper [142].

5.4.1 Model description
The model uses a single energy variable which is used to drive all reactions

within the cell, denoted a, which is produced by converting nutrients, s, to give
ns molecules of a. This a describes all intracellular molecules that can be used for
energy and as many molecules can be converted to energy in starvation conditions
represents a general metabolite.

Conversion is two step, first the s is transported by a transporter et with
rate vimp(et, s) and then converted to a by a metabolic enzyme em with rate
vcat(em, si), where si is the internalised s. Finally si is diluted by the growth of
the cell λsi, giving the dynamics of si as the following:

dsi
dt

= vimp(et, s)− vcat(em, si)− λsi (5.1)

The model considers that the only energy consuming reaction is the translation
of proteins and that each amino acid added consumes a single a. New proteins
are denoted x with total length nx and are produced at a rate vx and overall a
turnover is given by:

da

dt
= nsvcat(em, si)− vosmo(eosmovo)−

∑

x

nxvx − λa (5.2)

Where the sum over x is all types of protein in the cell. Energy is produced
by metabolising si and is removed by translation and diluted by cell growth. I
have modified this equation to include energy consumption by a new class of
enzymes representing the osmoregulatory network, eosmo, which consume energy
proportional to their number and the energy available to the cell vosmo(eosmovosmo).

Translational elongation rate is given by:

vx =
γ(a)

nx
cx ·Oktosmo (5.3)

where γmax is the maximal elongation rate, Kγ is energy required to give the
half maximal elongation rate and cx is the number of bound ribosomes transla-
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Chapter 5 5.4. Model of growth at high osmolarity

ting mRNA for x. To add osmolarity, the factor ktosmo is added to reduce the
translation rate proportional to the osmolarity.

For a given mRNA species x the concentration is given by:

dmx

dt
= wx(a)− kbmxr + kucx + vs − dmmx − λmx (5.4)

where it is increased by the transcription wx(a), and decreased by the rate of
degradation, dm which is assumed equal for all mRNAs. kb and ku are the rates
of binding and unbinding of ribosomes.

The concentration of bound ribosomes is therefore given as:

dcx
dt

= kbmxr − kucx − vx − λcx (5.5)

The model considers only that single ribosome can be bound to a given mRNA
at a time, ignoring polysomes, for the sake of simplicity. For free ribosomes the
equation is given by:

dr

dt
= vr − λr +

∑

x

[vx − kbmxr + kucx] (5.6)

For all protein fractions, the transcription rate is equal to the following:

wx(a) =
wxa

θx + a
(5.7)

Where θ is the half maximal transcription rate and wx is the maximal translation
rate. Each θ and wx is different for each protein fraction reflecting copy number,
induction level and length of gene x and are fitted by the model.

For osmoregulatory protein fraction, the transcription rate is for the osmore-
gulatory protein fraction is proportional to the osmolarity of the medium, O, and
some conversion factor Kosmo:

wosmo(a) =
wosmoa

θosmo + a
OKosmo (5.8)

Cell growth is defined as the change of cell mass per time, and the model
considers only the proteins as the major contributor to cell growth. At steady
state, where cells are growing exponentially the growth rate is therefore:

λ =
γ(a)

M

∑

x

cx (5.9)

Where M is the mass of a cell in a units or amino acids, which is approximately
108 amino acids for E.coli and for the sake of simplicity is assumed fixed.

To convert the change in mass to the number of cells, the relevant variable
for my experiments, a final equation is used:

dN

dt
= λN − dNN (5.10)

where the death rate of cells is given by dN and growth rate obeys eq.5.9.

We used the best fit parameters and rates found by Weiße et al [142], listed
in table, based upon single cell measurements of E.coli made by Scott et al [71].
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Chapter 5 5.4. Model of growth at high osmolarity

5.4.2 Qualitative testing of model
While constructing the model, I made use of existing data from our platerea-

der experiments shown in Fig.5.8. It should be noted that the asymptote quoted
in the figure is based purely on the optical density of the cells and not cell con-
centration due to lack of calibration curves for that data. It is also confounded
by reduced oxygen in the platereader and the inclusion of sucrose as the agent
for increasing the osmolarity and therefore causes an enhanced reduction in the
optical density, and therefore underestimation of yield at high osmolarity.
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Figure 5.8: Data used for initial testing of the model. Cells grown according to
methods 2.1.6 MM9 media with (black) glucose only (red) supplemented with
20 mM glycine betaine and choline (osmolytes).

However, despite these the data was a useful training tool to see if the model
could qualitatively reproduce the trends seen before attempting to fit it to greater
data sets. To this end I ran the model so that each modified equation could be
tested separately as detailed in the table below:

Model name Details on modifications

Full model
Modifications as above in red for Eq.5.2, Eq.5.3 and
Eq.5.8

Energy consumption
Modifications to Eq.5.2:
da
dt

= nsvcat(em, si)−Okosmo −
∑

x nxvx − λa
Crowding Modifications shown in Eq.5.3 only.

Each model type was run for a series of different osmolarities allowing for all
the newly added variables to be freely fit while retaining the parameters from
the Weiße paper. To perform the fitting a Markov Chain Monte Carlo routine
(see section 5.4.3 below) which attempted to fit model results to the data, using

98



Chapter 5 5.4. Model of growth at high osmolarity

the same fitting routine to analyse both the experimental and model data. This
algorithm generated the best fit values for the variables and produced plots for
the 50%, 90%, 95% and 99% confidence intervals as shown as the coloured areas
in Fig.5.9.

Figure 5.9: Growth rate (top) and Asymptote (bottom) for for simulating three
different variants of the model. Brown: Full modification described above. Green:
energy consumption. Blue: Crowding, simulated as a reduction in translation.
Coloured plots are fitting of a given model variant to the data in the black points
(data from Fig.5.8 using the MCMC routine. Bands dark to light, represent the
50, 90, 95 and 99% probabilities.

Based on the plots of the models tested, the full model shows the closest
relation to the data, following the trends closely. However, all of the models fail
to reproduce the plateau of growth rates in the range of 200-400mOsm media.
This is to be expected as ‘normal’ osmolarity for E.coli is generally considered
to be within this range (according to RDM and LB medium osmolarities) and
thus the high osmolarity models may not accurately reflect this region. The
diffusion only models do not affect the yield as predicted, as they do not make any
modification, either direct or indirect to the cellular energy pool. They also show
poor fit even to only the growth rate, indicating that the cells are compensating
for the reduction in translation rate, possibly by producing a greater number of
ribosomes.

To further understand the relationship between A and GR I introduced osmo-
lytes to the otherwise minimal media, specifically 20mM of glycine betaine and
choline Fig.5.8 red data points. As has been previously observed, the addition

99



Chapter 5 5.4. Model of growth at high osmolarity

Figure 5.10: Growth rate (left) and Asymptote (right) for minimal media (black)
and media supplemented with 20mM glycine betaine and choline (red) (data from
Fig.5.8). Model fitted is the full model described above and is fitted to both sets
of data simultaneously. Coloured plots are model confidence intervals for each set
produced by the model. Bands dark to light, represent the 50, 90, 95 and 99%
probabilities.

of the osmolytes increases the growth rates at mid to high osmolarity relative to
those without their presence but does not prevent the general decrease of growth
rate. Of significance is the lack of a corresponding change in the A of the growth
curves in the presence of osmolytes, instead the A values remain almost identical
to the minimal medium. This change implies a change growth rate that is not
related to changes in yield and hence the inclusion of the diffusion only models
in the tests. When the models were applied to both data sets with and without
osmolytes, they produced poor results. The areas in Fig.5.10 show the attempted
fit of the full model. Despite allowing all the osmotic variables to change between
the two media types, along with the ns parameter, the model fails to reproduce
the data and is unable to separate the growth rate from the asymptote to a great
enough degree.

5.4.3 Model fitting
The variants of the model were submitted to a MATlab [148] MCMC routine,

found here http://helios.fmi.fi/ lainema/mcmc/index.html, which executed opti-
misation of the available parameters. Parameters already obtained by the original
paper were not allowed to vary. I allowed the routine to perform 500 simulations
and to provide the sampling data for the 50,90,95 and 99% confidence statistics
plotted in the figures. For each model the model was fitted by normalising the
first osmolarity of the fitted region as 1mOsm to correct for the low osmolarity
plateau and to prevent calculation errors from zeros. For each osmolarity mea-
sured, the sum of squares of the experimental to model data was calculated and
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used to refine the fitting by the function.

It should be noted that the growth rates calculated for the model and data in
Fig.5.8 are not done using the gaussian fitting algorithm [114] used elsewhere in
the thesis. Instead, since the model is constructed in MATLAB and that fitting
routine is constructed in Python, I use a logistic growth curve model [140] shown
in Eq.5.11 and the MATLAB non linear fitting routine. Parameters for fitting
were optimised by the robust bi-square method and allowed to run as long as
required until the fits converge.

Logistic equation is defined so that variables are biologically relevant where
A is the asymptote, λm is the max growth rate, l is the lag time and N is the
number of cells:

N = A · exp
(
−exp

(
λme

A
(l − t) + 1

))
(5.11)
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5.5 Discussion
In the previous chapter, I have explored the reasons for reduction in growth at

high osmolarity through the measurement of the proteome, yield and cytoplasmic
diffusion constant. I aimed to improve the understanding of changes to growth at
high osmolarity in order to be able to compensate for negative side effects of using
the osmoregulatory network in improving ethanol tolerance so as to not affect the
ethanol production rates. This understanding would also assist the field in general
and my lab in particular as we aim to understand the energetics of bacterial
growth to a greater degree through pH and proton motive force measurements.

The yield, section 5.2, showed some surprising results with sucrose and NaCl
showing the same reduction in yield despite their difference in molecular weight,
charge and capacity to pass through the plasma membrane. It also demonstrated
that with the addition of 1M of either substance to the solution, the cost of
producing a cell increased by almost 50%.

When studying the proteome fraction at increasing osmolarities, I observed
two different trends depending on the media used. When osmolytes in the form of
casamino acids are present, the RNA/protein ration decreases along the linear re-
lationship defined by Scottet al. [71] in equation 1.1. Without osmolytes present,
the trend deviated heavily below this line. This is opposite to the relationship
seen in their follow-up paper [149] and Fig.1.6B where the RNA/protein ratio ri-
ses above the line of nutrient limitation with increasing osmolarity. In that paper
they grow cells in minimal media with glucose and increase the osmolarity with
NaCl and explain this relationship by showing that ribosomes are inactivated by
osmolarity and the translational elongation rate is reduced. In my case I use su-
crose to increase the osmolarity, and use bother minimal media and media with
osmolytes which may go some way to explaining this difference in trends. With
the use of the model in future, I hope to test this hypothesis using both sets of
data to inform the fit.

Finally, I measure the diffusion constant of µNS-GFP particles within the cy-
toplasm of E.coli and find different trends in both sucrose and NaCl. In NaCl the
middle range particles show a decrease in radius of gyration with large and small
particles similar to the normal osmolarity. For sucrose the trend is consistently
below the wildtype. All datapoints have a fairly large error due to the low num-
ber of samples and inherent distribution in particle sizes and stochastic nature of
the motion. If these trends are real, then it may go some way to explaining the
difference in RNA/protein measurements above, as sucrose and NaCl affect the
diffusion and therefore the rates of chemical reactions differently.
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Discussion and future work

6.1 Improving ethanol tolerance
Ethanol and osmolarity have a number of similar effects on the cell membrane

and protein stability. The aim of this thesis was to attempt to use knowledge of
the osmoregulation network of E.coli to attempt to improve the ethanol tolerance
of bacteria.

I investigated how varying conditions of growth would affect the ethanol to-
lerance of E.coli, focussing primarily on trying to change the conditions that the
bacteria were grown in. I found that addition of osmolytes to minimal medium
did not make give significant improvements to ethanol tolerance, nor did incre-
asing the concentration of normal components of LB. Increasing the osmolarity
of the medium led to a decrease in tolerance to ethanol most likely due to the
combination of stresses upon the cell.

One mechanism we found that could improve the tolerance of bacteria was
a reduction in the temperature at which the cells were grown. While this does
decrease the growth rate, it does improve the tolerance significantly with an
increase from 5.75% to 7.75% with a reduction from 37 ◦C to 25 ◦C. This effect
is likely due to the effect of increased membrane and protein stability with a
reduction in temperature [85,101]

I also explored the importance of osmoregulatory components for ethanol
tolerance by exposing single gene knockouts to various concentrations of ethanol.
The proW gene, a subcomponent of the proU transport system, showed a link to
ethanol tolerance with the mutant having a significantly reduced tolerance with a
reduction of 2.5% compared to wildtype E.coli. This would suggest that glycine
betaine provides protection to ethanol, however, supplementing the media with
glycine betaine as in chapter 2.5 did not help with tolerance. Its possible another
substrate of the transport system is required for resistance, such as ectoine or
proline betaine. It is unclear however, how much of these compounds is present
in the LB that the bacteria were growing in [62]. Based on this future work
should start by probing the other components of the ProU transport system to
see if they also had a link with ethanol tolerance as well as trying other osmolytes
of ectoine or proline betaine.

In addition the model of industrial bio-production of ethanol detailed in chap-

103



Chapter 6 6.2. E.coli physiology at high osmolarity

ter 4.1 provides a simple yet useful way of converting any improvement to a mo-
netary value when used in the industrial process. Furthermore I suggest that
evolving strains of E.coli at high osmolarity may yield improved ethanol tole-
rance through some of the cross-talk of the osmoregulatory systems to ethanol
tolerance.

6.2 E.coli physiology at high osmolarity
The most interesting result of this thesis is the quantification of the reduction

in yield that occurs at high osmolarity, with an approximately 50% yield re-
duction with the addition of 1000mOsm sucrose to the medium and a similar
value for NaCl. This has not been reported much in the literature but is somew-
hat expected due to the energy consuming nature of the osmoregulatory network.
What is unusual is the magnitude of the cost of growth, being significant enough
to double the cost of producing a single E.coli cell.

I also saw changes to the proteome fraction and diffusion constants, however
there is some contradiction with existing literature in the trends obtained. It
remains to be seen if the trends will be borne out with further sampling. Assuming
the trends are real then they suggest that the media and the osmotic agent have
a significant effect on the proteome fraction as we obtained two different trends
with and without cassamino acids and both trends differ from the measurements
by Scott et al. [71].

The coarse grained model presented in chapter 5.4 may offer some explanation
if all of the data is integrated into it. However, the qualitative fitting attempts
demonstrate that the model currently lacks the capacity to fit minimal and rich
media using the current parameters and as such requires some further modifica-
tion.

6.3 Future directions
To enhance further experiments or measurements for diffusion constants at

high osmolarity, a new piece of imaging equipment would be useful;a Single Pho-
ton Avalanche Diode. This would allow much faster imaging than is currently
possible in our setup, eliminating the underestimation of diffusion constant pre-
sent in current data.

In addition when combined with the confinement model in chapter 3.1, it could
be possible to simulate confined diffusion in subcellular compartments using the
saturation of mean square displacement as an indicator of the effective volume the
particle is moving within in a manner similar to [150]. The subcellular compart-
ments are theorised by Poolman et al. [83,151] to be formed during high osmola-
rity, accounting for lower crowding of smaller proteins but the apparent slowdown
of diffusion of larger particles seen here and in the Dai et al. study [70].
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