84 research outputs found

    DNA mediated chromatin pull-down for the study of chromatin replication

    Get PDF
    Chromatin replication involves duplicating DNA while maintaining epigenetic information. These processes are critical for genome stability and for preserving cell-type identity. Here we describe a simple experimental approach that allows chromatin to be captured and its content analysed after in vivo replication and labeling of DNA by cellular DNA polymerases. We show that this technique is highly specific and that proteins bound to the replicated DNA can be analyzed by both immunological techniques and large scale mass spectrometry. As proof of concept we have used this novel procedure to begin investigating the relationship between chromatin protein composition and the temporal programme of DNA replication in human cells. It is expected that this technique will become a widely used tool to address how chromatin proteins assemble onto newly replicated DNA after passage of a replication fork and how chromatin maturation is coupled to DNA synthesis

    Haploinsufficiency for p190B RhoGAP inhibits MMTV-Neu tumor progression

    Get PDF
    Introduction: Rho signaling regulates key cellular processes including proliferation, survival, and migration, and it has been implicated in the development of many types of cancer including breast cancer. P190B Rho GTPase activating protein (RhoGAP) functions as a major inhibitor of the Rho GTPases. P190B is required for mammary gland morphogenesis, and overexpression of p190B in the mammary gland induces hyperplastic lesions. Hence, we hypothesized that p190B may play a pivotal role in mammary tumorigenesis. Methods: To investigate the effects of loss of p190B function on mammary tumor progression, p190B heterozygous mice were crossed with an MMTV-Neu breast cancer model. Effects of p190B deficiency on tumor latency, multiplicity, growth, preneoplastic progression and metastasis were evaluated. To investigate potential differences in tumor angiogenesis between the two groups, immunohistochemistry to detect von Willebrand factor was performed and quantified. To examine gene expression of potential mediators of the angiogenic switch, an angiogenesis PCR array was utilized and results were confirmed using immunohistochemistry. Finally, reciprocal transplantation of tumor fragments was performed to determine the impact of stromal deficiency of p190B on tumor angiogenesis. Results: P190B deficiency reduced tumor penetrance (53% of p190B+/Neup190B^{+/-}Neu mice vs. 100% of p190B+/+Neup190B^{+/+}Neu mice formed tumors) and markedly delayed tumor onset by an average of 46 weeks. Tumor multiplicity was also decreased, but an increase in the number of preneoplastic lesions was detected indicating that p190B deficiency inhibited preneoplastic progression. Angiogenesis was decreased in the p190B heterozygous tumors, and expression of a potent angiogenic inhibitor, thrombospondin-1, was elevated in p190B+/Neup190B^{+/-}Neu mammary glands. Transplantation of p190B+/Neup190B^{+/-}Neu tumor fragments into wild-type recipients restored tumor angiogenesis. Strikingly, p190B+/+Neup190B^{+/+}Neu tumor fragments were unable to grow when transplanted into p190B+/Neup190B^{+/-}Neu recipients. Conclusions: These data suggest that p190B haploinsufficiency in the epithelium inhibits MMTV-Neu tumor initiation. Furthermore, p190B deficiency in the vasculature is responsible, in part, for the inhibition of MMTV-Neu tumor progression

    A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment

    Get PDF
    This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain

    Links Between Hydrothermal Environments, Pyrophosphate, Na+, and Early Evolution

    Get PDF
    The discovery that photosynthetic bacterial membrane-bound inorganic pyrophosphatase (PPase) catalyzed light-induced phosphorylation of orthophosphate (Pi) to pyrophosphate (PPi) and the capability of PPi to drive energy requiring dark reactions supported PPi as a possible early alternative to ATP. Like the proton-pumping ATPase, the corresponding membrane-bound PPase also is a H+-pump, and like the Na+-pumping ATPase, it can be a Na+-pump, both in archaeal and bacterial membranes. We suggest that PPi and Na+ transport preceded ATP and H+ transport in association with geochemistry of the Earth at the time of the origin and early evolution of life. Life may have started in connection with early plate tectonic processes coupled to alkaline hydrothermal activity. A hydrothermal environment in which Na+ is abundant exists in sediment-starved subduction zones, like the Mariana forearc in the W Pacific Ocean. It is considered to mimic the Archean Earth. The forearc pore fluids have a pH up to 12.6, a Na+-concentration of 0.7 mol/kg seawater. PPi could have been formed during early subduction of oceanic lithosphere by dehydration of protonated orthophosphates. A key to PPi formation in these geological environments is a low local activity of water
    corecore