164 research outputs found

    Towards a multimedia knowledge-based agent with social competence and human interaction capabilities

    Get PDF
    We present work in progress on an intelligent embodied conversation agent in the basic care and healthcare domain. In contrast to most of the existing agents, the presented agent is aimed to have linguistic cultural, social and emotional competence needed to interact with elderly and migrants. It is composed of an ontology-based and reasoning-driven dialogue manager, multimodal communication analysis and generation modules and a search engine for the retrieval of multimedia background content from the web needed for conducting a conversation on a given topic.The presented work is funded by the European Commission under the contract number H2020-645012-RIA

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic

    Principles of meiotic chromosome assembly revealed in S. cerevisiae

    Get PDF
    During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus)

    Get PDF
    North American monarch butterflies (Danaus plexippus) undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH) deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST) resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents ∼52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout) were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation) were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs) and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our “snap-shot” analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive transcriptional profiling will inform the molecular basis of migration. The identified SNPs and microsatellite polymorphisms can be used as genetic markers to address questions of population and subspecies structure

    Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting

    Get PDF
    The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This ‘centromere breathing’ presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres

    Separation of DNA Replication from the Assembly of Break-Competent Meiotic Chromosomes

    Get PDF
    The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS) and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not strictly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms

    Cohesin Is Limiting for the Suppression of DNA Damage–Induced Recombination between Homologous Chromosomes

    Get PDF
    Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage–induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage–induced recombinants in G2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer

    Pch2 Links Chromosome Axis Remodeling at Future Crossover Sites and Crossover Distribution during Yeast Meiosis

    Get PDF
    Segregation of homologous chromosomes during meiosis I depends on appropriately positioned crossovers/chiasmata. Crossover assurance ensures at least one crossover per homolog pair, while interference reduces double crossovers. Here, we have investigated the interplay between chromosome axis morphogenesis and non-random crossover placement. We demonstrate that chromosome axes are structurally modified at future crossover sites as indicated by correspondence between crossover designation marker Zip3 and domains enriched for axis ensemble Hop1/Red1. This association is first detected at the zygotene stage, persists until double Holliday junction resolution, and is controlled by the conserved AAA+ ATPase Pch2. Pch2 further mediates crossover interference, although it is dispensable for crossover formation at normal levels. Thus, interference appears to be superimposed on underlying mechanisms of crossover formation. When recombination-initiating DSBs are reduced, Pch2 is also required for viable spore formation, consistent with further functions in chiasma formation. pch2Δ mutant defects in crossover interference and spore viability at reduced DSB levels are oppositely modulated by temperature, suggesting contributions of two separable pathways to crossover control. Roles of Pch2 in controlling both chromosome axis morphogenesis and crossover placement suggest linkage between these processes. Pch2 is proposed to reorganize chromosome axes into a tiling array of long-range crossover control modules, resulting in chiasma formation at minimum levels and with maximum spacing

    The Impact of Recombination on Nucleotide Substitutions in the Human Genome

    Get PDF
    Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of crossovers (R2 = 47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots. We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations indicate that variations in population size or density in recombination hotspots can have a very strong impact on the evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of hotspot density between human and chimp
    corecore