858 research outputs found

    The quantitative soil pit method for measuring belowground carbon and nitrogen stocks

    Get PDF
    Many important questions in ecosystem science require estimates of stocks of soil C and nutrients. Quantitative soil pits provide direct measurements of total soil mass and elemental content in depth-based samples representative of large volumes, bypassing potential errors associated with independently measuring soil bulk density, rock volume, and elemental concentrations. The method also allows relatively unbiased sampling of other belowground C and nutrient stocks, including roots, coarse organic fragments, and rocks. We present a comprehensive methodology for sampling these pools with quantitative pits and assess their accuracy, precision, effort, and sampling intensity as compared to other methods. At 14 forested sites in New Hampshire, nonsoil belowground pools (which other methods may omit, double-count, or undercount) accounted for upward of 25% of total belowground C and N stocks: coarse material accounted for 4 and 1% of C and N in the O horizon; roots were 11 and 4% of C and N in the O horizon and 10 and 3% of C and N in the B horizon; and soil adhering to rocks represented 5% of total B-horizon C and N. The top 50 cm of the C horizon contained the equivalent of 17% of B-horizon carbon and N. Sampling procedures should be carefully designed to avoid treating these important pools inconsistently. Quantitative soil pits have fewer sources of systematic error than coring methods; the main disadvantage is that because they are time-consuming and create a larger zone of disturbance, fewer observations can be made than with cores

    Matching Regge Theory to the OPE

    Full text link
    The spectra of masses and decay constants for non-strange meson resonances in the energy range 0--2.5 GeV is analyzed. It is known from meson phenomenology that for given quantum numbers these spectra approximately follow linear trajectories with a universal slope. These facts can be understood in terms of an effective string description for QCD. For light meson states the trajectories deviate noticeably from the linear behavior. We investigate the possible corrections to the linear trajectories by matching two-point correlators of quark currents to the Operator Product Expansion (OPE). We find that the allowed modifications to the linear Regge behavior must decrease rapidly with the principal quantum number. After fitting the lightest states in each channel and certain low-energy constants the whole spectrum for meson masses and residues is obtained in a satisfactory agreement with phenomenology. We briefly speculate on possible implications for the QCD effective string.Comment: 24 pages, Latex, significant changes in discussion of fits, more refs adde

    Combinatorial Voter Control in Elections

    Get PDF
    Voter control problems model situations such as an external agent trying to affect the result of an election by adding voters, for example by convincing some voters to vote who would otherwise not attend the election. Traditionally, voters are added one at a time, with the goal of making a distinguished alternative win by adding a minimum number of voters. In this paper, we initiate the study of combinatorial variants of control by adding voters: In our setting, when we choose to add a voter~vv, we also have to add a whole bundle κ(v)\kappa(v) of voters associated with vv. We study the computational complexity of this problem for two of the most basic voting rules, namely the Plurality rule and the Condorcet rule.Comment: An extended abstract appears in MFCS 201

    Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

    Full text link
    We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.Comment: 7 pages, 7 figure

    Using smart meters to estimate low voltage losses

    Get PDF
    Losses on low voltage networks are often substantial. For example, in the UK they have been estimated as being 4% of the energy supplied by low voltage networks. However, the breakdown of the losses to individual conductors and their split over time are poorly understood as generally only the peak demands and average loads over several months have been recorded. The introduction of domestic smart meters has the potential to change this. How domestic smart meter readings can be used to estimate the actual losses is analysed. In particular, the accuracy of using 30 minute readings compared with 1 minute readings, and how this accuracy could be improved, were investigated. This was achieved by assigning the data recorded by 100 smart meters with a time resolution of 1 minute to three test networks. Smart meter data from three sources were used in the investigation. It was found that 30 minute resolution data underestimated the losses by between 9% and 24%. By fitting an appropriate model to the data, it was possible to reduce the inaccuracy by approximately 50%. Having a smart meter time resolution of 10 minutes rather than 30 gave little improvement to the accuracy

    A quantum Monte Carlo study of the one-dimensional ionic Hubbard model

    Full text link
    Quantum Monte Carlo methods are used to study a quantum phase transition in a 1D Hubbard model with a staggered ionic potential (D). Using recently formulated methods, the electronic polarization and localization are determined directly from the correlated ground state wavefunction and compared to results of previous work using exact diagonalization and Hartree-Fock. We find that the model undergoes a thermodynamic transition from a band insulator (BI) to a broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with no long-range order, we have searched for a second transition to this state by (i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U. We find no transition from the BO to MI state, and we propose that the MI state in 1D is unstable to bond ordering under the addition of any finite ionic potential. In real 1D systems the symmetric MI phase is never stable and the transition is from a symmetric BI phase to a dimerized BO phase, with a metallic point at the transition

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    Vitamin D composition of Australian foods

    Get PDF
    Australia needs accurate vitamin D food composition data to support public health initiatives. Previously, limitations in analytical methodology have precluded development of a comprehensive database. We used liquid chromatography with triple quadrupole mass spectrometry (LC-QQQ) to analyse 149 composite samples representing 98 foods (primary samples n = 896) in duplicate for vitamin D3, 25-hydroxyvitamin D3 (25(OH)D3), vitamin D2, 25(OH)D2. The greatest concentrations of vitamin D3 were found in canned salmon and a malted chocolate drink powder (fortified); chicken eggs and chicken leg meat contained the most 25(OH)D3. Margarine (fortified) and chocolate contained the greatest concentrations of vitamin D2, with smaller amounts found in various meat products. 25(OH)D2 was detected in various foods, including meats, and was quantitated in lamb liver. These data advance knowledge of dietary vitamin D in Australia and highlight the importance of analysis of these four forms of vitamin D to accurately represent the vitamin D content of food

    Distinct Costimulatory Molecules Are Required for the Induction of Effector and Memory Cytotoxic T Lymphocytes

    Get PDF
    A successful T cell immune response has two major products: effector T cells which directly or indirectly remove the antigens, and memory T cells, which allow a faster and more efficient recall response when challenged by related antigens. An important issue is whether costimulatory molecules on the antigen-presenting cells are involved in determining whether T cells will differentiate into effector or memory cells after antigenic stimulation. To address this issue, we have produced mice with targeted mutations of either the heat-stable antigen (HSA), or both HSA and CD28. We show that CD28/B7 and HSA provide two alternative costimulatory pathways for induction of immunological memory to influenza virus. Furthermore, our results revealed that B7 is essential for the generation of effector T cells from either naive or memory T cells, while HSA is not necessary for the generation of effector T cells. Our results demonstrate that the induction of memory T cells and effector T cells can utilize distinct costimulatory molecules. These results have important implications on lineage relationship between effector and memory T cells
    corecore