79 research outputs found

    Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury

    Get PDF
    The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are still being investigated. By applying the “toxin receptor mediated cell knockout” method under the control of the S3 segment-specific promoter/enhancer, Gsl5, which drives core 2 β-1,6-N-acetylglucosaminyltransferase gene expression, we established a transgenic mouse line expressing the human diphtheria toxin (DT) receptor only in the S3 segment. The administration of DT to these transgenic mice caused the selective ablation of S3 segment cells in a dose-dependent manner, and transgenic mice exhibited polyuria containing serum albumin and subsequently developed oliguria. An increase in the concentration of blood urea nitrogen was also observed, and the peak BUN levels occurred 3–7 days after DT administration. Histological analysis revealed that the most severe injury occurred in the S3 segments of the proximal tubule, in which tubular cells were exfoliated into the tubular lumen. In addition, aquaporin 7, which is localized exclusively to the S3 segment, was diminished. These results indicate that this transgenic mouse can suffer acute kidney injury (AKI) caused by S3 segment-specific damage after DT administration. This transgenic line offers an excellent model to uncover the mechanisms of AKI and its rapid recovery

    Quantitative and Qualitative Urinary Cellular Patterns Correlate with Progression of Murine Glomerulonephritis

    Get PDF
    The kidney is a nonregenerative organ composed of numerous functional nephrons and collecting ducts (CDs). Glomerular and tubulointerstitial damages decrease the number of functional nephrons and cause anatomical and physiological alterations resulting in renal dysfunction. It has recently been reported that nephron constituent cells are dropped into the urine in several pathological conditions associated with renal functional deterioration. We investigated the quantitative and qualitative urinary cellular patterns in a murine glomerulonephritis model and elucidated the correlation between cellular patterns and renal pathology

    Altering a Histone H3K4 Methylation Pathway in Glomerular Podocytes Promotes a Chronic Disease Phenotype

    Get PDF
    Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression was significantly reduced and whose function may be essential for podocyte foot process patterning. These data demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated cells and lead to a chronic disease state

    Mechanisms of progression of chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) occurs in all age groups, including children. Regardless of the underlying cause, CKD is characterized by progressive scarring that ultimately affects all structures of the kidney. The relentless progression of CKD is postulated to result from a self-perpetuating vicious cycle of fibrosis activated after initial injury. We will review possible mechanisms of progressive renal damage, including systemic and glomerular hypertension, various cytokines and growth factors, with special emphasis on the renin–angiotensin–aldosterone system (RAAS), podocyte loss, dyslipidemia and proteinuria. We will also discuss possible specific mechanisms of tubulointerstitial fibrosis that are not dependent on glomerulosclerosis, and possible underlying predispositions for CKD, such as genetic factors and low nephron number

    Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly

    Get PDF
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms
    corecore