52 research outputs found

    Optimising the chick chorioallantoic membrane xenograft model of neuroblastoma for drug delivery

    Get PDF
    Background Neuroblastoma is a paediatric cancer that despite multimodal therapy still has a poor outcome for many patients with high risk tumours. Retinoic acid (RA) promotes differentiation of some neuroblastoma tumours and cell lines, and is successfully used clinically, supporting the view that differentiation therapy is a promising strategy for treatment of neuroblastoma. To improve treatment of a wider range of tumour types, development and testing of novel differentiation agents is essential. New pre-clinical models are therefore required to test therapies in a rapid cost effective way in order to identify the most useful agents. Methods As a proof of principle, differentiation upon ATRA treatment of two MYCN-amplified neuroblastoma cell lines, IMR32 and BE2C, was measured both in cell cultures and in tumours formed on the chick chorioallantoic membrane (CAM). Differentiation was assessed by 1) change in cell morphology, 2) reduction in cell proliferation using Ki67 staining and 3) changes in differentiation markers (STMN4 and ROBO2) and stem cell marker (KLF4). Results were compared to MLN8237, a classical Aurora Kinase A inhibitor. For the in vivo experiments, cells were implanted on the CAM at embryonic day 7 (E7), ATRA treatment was between E11 and E13 and tumours were analysed at E14. Results Treatment of IMR32 and BE2C cells in vitro with 10 μM ATRA resulted in a change in cell morphology, a 65% decrease in cell proliferation, upregulation of STMN4 and ROBO2 and downregulation of KLF4. ATRA proved more effective than MLN8237 in these assays. In vivo, 100 μM ATRA repetitive treatment at E11, E12 and E13 promoted a change in expression of differentiation markers and reduced proliferation by 43% (p < 0.05). 40 μM ATRA treatment at E11 and E13 reduced proliferation by 37% (p < 0.05) and also changed cell morphology within the tumour. Conclusion Differentiation of neuroblastoma tumours formed on the chick CAM can be analysed by changes in cell morphology, proliferation and gene expression. The well-described effects of ATRA on neuroblastoma differentiation were recapitulated within 3 days in the chick embryo model, which therefore offers a rapid, cost effective model compliant with the 3Rs to select promising drugs for further preclinical analysis

    An investigation of WNT pathway activation and association with survival in central nervous system primitive neuroectodermal tumours (CNS PNET)

    Get PDF
    Central nervous system primitive neuroectodermal tumours (CNS PNET) are high-grade, predominantly paediatric, brain tumours. Previously they have been grouped with medulloblastomas owing to their histological similarities. The WNT/β-catenin pathway has been implicated in many tumour types, including medulloblastoma. On pathway activation β-catenin (CTNNB1) translocates to the nucleus, where it induces transcription of target genes. It is commonly upregulated in tumours by mutations in the key pathway components APC and CTNNB1. WNT/β-catenin pathway status was investigated by immunohistochemical analysis of CTNNB1 and the pathway target cyclin D1 (CCND1) in 49 CNS PNETs and 46 medulloblastomas. The mutational status of APC and CTNNB1 (β-catenin) was investigated in 33 CNS PNETs and 22 medulloblastomas. CTNNB1 nuclear localisation was seen in 36% of CNS PNETs and 27% of medulloblastomas. A significant correlation was found between CTNNB1 nuclear localisation and CCND1 levels. Mutations in CTNNB1 were identified in 4% of CNS PNETs and 20% of medulloblastomas. No mutations were identified in APC. A potential link between the level of nuclear staining and a better prognosis was identified in the CNS PNETs, suggesting that the extent of pathway activation is linked to outcome. The results suggest that the WNT/β-catenin pathway plays an important role in the pathogenesis of CNS PNETs. However, activation is not caused by mutations in CTNNB1 or APC in the majority of CNS PNET cases

    Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas

    Get PDF
    Childhood medulloblastomas (MB) are heterogeneous and are divided into four molecular subgroups. The provisional non-wingless-activated (WNT)/non-sonic hedgehog-activated (SHH) category combining group 3 and group 4 represents over two thirds of all MBs, coupled with the highest rates of metastases and least understood pathology. The molecular era expanded our knowledge about molecular aberrations involved in MB tumorigenesis, and here, we review processes leading to non-WNT/non-SHH MB formations.The heterogeneous group 3 and group 4 MBs frequently harbor rare individual genetic alterations, yet the emerging profiles suggest that infrequent events converge on common, potentially targetable signaling pathways. A mutual theme is the altered epigenetic regulation, and in vitro approaches targeting epigenetic machinery are promising. Growing evidence indicates the presence of an intermediate, mixed signature group along group 3 and group 4, and future clarifications are imperative for concordant classification, as misidentifying patient samples has serious implications for therapy and clinical trials.To subdue the high MB mortality, we need to discern mechanisms of disease spread and recurrence. Current preclinical models do not represent the full scale of group 3 and group 4 heterogeneity: all of existing group 3 cell lines are MYC-amplified and most mouse models resemble MYC-activated MBs. Clinical samples provide a wealth of information about the genetic divergence between primary tumors and metastatic clones, but recurrent MBs are rarely resected. Molecularly stratified treatment options are limited, and targeted therapies are still in preclinical development. Attacking these aggressive tumors at multiple frontiers will be needed to improve stagnant survival rates
    • …
    corecore