15 research outputs found

    Analysis of dendritic cells in tumor-free and tumor-containing sentinel lymph nodes from patients with breast cancer

    Get PDF
    INTRODUCTION: Sentinel lymph node (SLN) biopsy allows identification of the first lymph node into which a primary tumor drains. In breast cancer, identification of tumor cells in the SLNs is a predictor of the tumor's metastatic potential. In the present article, we tested the hypotheses that a positive immune response can occur in tumor-free SLNs and that the activation state of dendritic cells (DCs), the major antigen presenting cells within SLNs, predicts the immune status and metastatic potential of the tumor. METHODS: Fifty paraffin-embedded SLN sections, 25 tumor-free and 25 tumor-containing, from patients with breast cancer were analyzed by immunohistochemistry to determine the immune maturation state of their DCs. In addition, 12 lymph nodes from noncancer-containing breasts were analyzed. Tissues were stained with antibodies against CD3, MHC class II, CD1a, CD83, IL-10, and IL-12. Mature DCs were defined by CD83 expression and immature DCs by CD1a expression. RESULTS: We found a trend toward higher numbers of mature CD83-positive DCs in tumor-free SLNs than in tumor-containing SLNs (P = 0.07). In addition, tumor-free SLNs were more likely to contain cells expressing IL-10 (P = 0.02) and, to a lesser extent, IL-12 (P = 0.12). In contrast, when all SLNs, both tumor-free and tumor-containing, were compared with uninvolved lymph nodes, the numbers of mature and immature DCs were similar. CONCLUSIONS: Our results suggest tumor-free SLNs are immunologically competent and potentially a site of tumor-specific T-cell activation, as evidenced by the presence of greater numbers of mature DCs and cytokine-producing cells in tumor-free SLNs

    An essential role for decorin in bladder cancer invasiveness

    Get PDF
    Muscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49-I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49-I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle-invasive human bladder carcinomas, which overexpress decorin together with angiogenesis- and adhesion/migration-related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.Fil: El Behi, Mohamed. Institute Curie; Francia. Centre de Recherche de I; Francia. Inserm; FranciaFil: Krumeich, Sophie. Institute Curie; Francia. Inserm; FranciaFil: Lodillinsky, Catalina. Institute Curie; Francia. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kamoun, Aurélie. Institute Curie; FranciaFil: Tibaldi, Lorenzo. Institute Curie; Francia. Inserm; FranciaFil: Sugano, Gaël. Institute Curie; Francia. Inserm; FranciaFil: de Reynies, Aurélien. Ligue Nationale Contre le Cancer; FranciaFil: Chapeaublanc, Elodie. Institute Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Laplanche, Agnès. Centre National de la Recherche Scientifique; Francia. Institut de Cancérologie Gustave Roussy; FranciaFil: Lebret, Thierry. Hôpital Foch. Service d; Francia. Université de Versailles; FranciaFil: Allory, Yves. Inserm; FranciaFil: Radvanyi, François. Institute Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Lantz, Olivier. Institute Curie; Francia. Inserm; FranciaFil: Eijan, Ana Maria. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bernard Pierrot, Isabelle. Institute Curie; Francia. Centre National de la Recherche Scientifique; FranciaFil: Théery, Clotilde. Institute Curie; Francia. Inserm; Franci

    From ‘Hellstrom Paradox–to anti-adenosinergic cancer immunotherapy

    Get PDF
    Cancer therapy by endogenous or adoptively transferred anti-tumor T cells is considered complementary to conventional cancer treatment by surgery, radiotherapy or chemotherapy. However, the scope of promising immunotherapeutic protocols is currently limited because tumors can create a ‘hostile–immunosuppressive microenvironment that prevents their destruction by anti-tumor T cells. There is a possibility to develop better and more effective immunotherapies by inactivating mechanisms that inhibit anti-tumor T cells in the tumor microenvironment and thereby protect cancerous tissues from immune damage. This may be now possible because of the recent demonstration that genetic deletion of immunosuppressive A2A and A2B adenosine receptors (A2AR and A2BR) or their pharmacological inactivation can prevent the inhibition of anti-tumor T cells by the hypoxic tumor microenvironment and as a result facilitate full tumor rejection [Ohta A, Gorelik E, Prasad SJ et al (2006) Proc Natl Acad Sci USA 103(35):13132–3137]. This approach is based on in vivo genetic evidence that A2AR play a critical role in the protection of normal tissues from overactive immune cells in acutely inflamed and hypoxic areas. The observations of much improved T-cell-mediated rejection of tumors in mice with inactivated A2AR strongly suggest that A2AR also protects hypoxic cancerous tissues and that A2AR should be inactivated in order to improve tumor rejection by anti-tumor T cells

    Expression of NF-κB p50 in Tumor Stroma Limits the Control of Tumors by Radiation Therapy

    Get PDF
    Radiation therapy aims to kill cancer cells with a minimum of normal tissue toxicity. Dying cancer cells have been proposed to be a source of tumor antigens and may release endogenous immune adjuvants into the tumor environment. For these reasons, radiation therapy may be an effective modality to initiate new anti-tumor adaptive immune responses that can target residual disease and distant metastases. However, tumors engender an environment dominated by M2 differentiated tumor macrophages that support tumor invasion, metastases and escape from immune control. In this study, we demonstrate that following radiation therapy of tumors in mice, there is an influx of tumor macrophages that ultimately polarize towards immune suppression. We demonstrate using in vitro models that this polarization is mediated by transcriptional regulation by NFκB p50, and that in mice lacking NFκB p50, radiation therapy is more effective. We propose that despite the opportunity for increased antigen-specific adaptive immune responses, the intrinsic processes of repair following radiation therapy may limit the ability to control residual disease

    Overexpression of Interleukin-10 in Sentinel Lymph Node with Breast Cancer

    No full text
    Background: In breast carcinoma, identification of tumor cells in the sentinel lymph nodes is a predictor of the tumors metastatic potential. Sentinel lymph node may be targeted not only by tumor cell metastasis but also by cytokines from the emergence of antitumor immune responses. Methods: Between February 2003 and February 2004, the investigator evaluated 38 cases that underwent sentinel lymph node biopsy at the Samsung Medical Center. Eighty paraffin-embedded sections, 49 sentinel, and 31 nonsentinel lymph node, from breast carcinoma without lymphatic metastases were analyzed by real-time polymerase chain reaction to evaluate the cytokine profile (interferon-γ, interleukin-2, interleukin-10 and interleukin-12) for the T cell response. Results: A higher expression of interleukin-10 was observed in sentinel lymph node than in nonsentinel lymph node (P = 0.03). The expressions of interferon-γ, interleukin-2, and interleukin-12 were similar between sentinel and nonsentinel lymph node. Conclusions: Theses results indicate that T cell response was downregulated by interleukin-10 overexpression in sentinel lymph node with breast cancer

    HeLa cells cocultured with peripheral blood lymphocytes acquire an immuno-inhibitory phenotype through up-regulation of indoleamine 2,3-dioxygenase activity

    No full text
    The mechanisms by which tumour cells escape recognition by the immune system or subvert antitumour effector responses remain poorly understood. In the course of investigating the potential of costimulatory signals in anticancer immunotherapy strategies, we have observed that HeLa cells (a human cervical carcinoma cell line) cocultured with peripheral blood lymphocytes (PBL) acquire the capacity to inhibit PBL proliferation in response to interleukin-2 (IL-2). This immuno-inhibitory phenotype was further shown to result from induction of the tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase (IDO), by interferon-γ (IFN-γ) secreted from cocultured allo-reactive PBL. This enzyme has recently been shown to be a critically important modulator of immunological responses, most notably through the capacity to protect allogeneic concepti from alloreactive maternal lymphocytes. While the cytostatic consequences of IDO activity in tumour cells has received attention, the data presented in this report support the hypothesis that IDO activity may also act to impair antitumour immune responses

    Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation

    No full text
    The aim of this study was to investigate the mechanisms by which interleukin-10 (IL-10) induces tumour growth in a mouse-melanoma model. A B16-melanoma cell line (B16-0) was transfected with IL-10 cDNA and three clones that secreted high (B16-10), medium and low amounts of IL-10 were selected. Cell proliferation and IL-10 production were compared in vitro, and tumour growth, percentages of necrotic areas, tumour cells positive for proliferating cell nuclear antigen (PCNA), IL-10 receptor (IL-10R) and major histocompatibility complex type I (MHC-I) and II (MHC-II), as well as infiltration of macrophages, CD4(+) and CD8(+) lymphocytes and blood vessels were compared in vivo among IL-10-transfected and non-transfected tumours. Proliferation and tumour growth were greater for IL-10-transfected than for non-transfected cells (P < 0·001), and correlated with IL-10 concentration (r ≥ 0·79, P < 0·006). Percentages of tumour cells positive for PCNA and IL-10R were 4·4- and 16·7-fold higher, respectively, in B16-10 than in B16-0 tumours (P < 0·001). Macrophage distribution changed from a diffuse pattern in non-transfected (6·4 ± 1·7%) to a peripheral pattern in IL-10-transfected (3·8 ± 1·7%) tumours. The percentage of CD4(+) lymphocytes was 7·6 times higher in B16-10 than in B16-0 tumours (P = 0·002). The expression of MHC-I molecules was present in all B16-0 tumour cells and completely negative in B16–10 tumour cells. In B16-0 tumours, 89 ± 4% of the whole tumour area was necrotic, whereas tumours produced by B16-10 cells showed only 4·3 ± 6% of necrotic areas. IL-10-transfected tumours had 17-fold more blood vessels than non-transfected tumours (61·8 ± 8% versus 3·5 ± 1·7% blood vessels/tumour; P < 0·001). All the effects induced by IL-10 were prevented in mice treated with a neutralizing anti-IL-10 monoclonal antibody. These data indicate that IL-10 could induce tumour growth in this B16-melanoma model by stimulation of tumour-cell proliferation, angiogenesis and immunosuppression
    corecore