8 research outputs found

    Variability and Action Mechanism of a Family of Anticomplement Proteins in Ixodes ricinus

    Get PDF
    Background: Ticks are blood feeding arachnids that characteristically take a long blood meal. They must therefore counteract host defence mechanisms such as hemostasis, inflammation and the immune response. This is achieved by expressing batteries of salivary proteins coded by multigene families. Methodology/Principal Findings: We report the in-depth analysis of a tick multigene family and describe five new anticomplement proteins in ixodes ricinus. Compared to previously described Ixodes anticomplement proteins, these segregated into a new phylogenetic group or subfamily. These proteins have a novel action mechanism as they specifically bind to properdin, leading to the inhibition of C3 convertase and the alternative complement pathway. An excess of non-synonymous over synonymous changes indicated that coding sequences had undergone diversifying selection. Diversification was not associated with structural, biochemical o, functional diversity, adaptation to host species or stage specificity but rather to differences in antigenicity. Conclusion/Significance: Anticomplement proteins from I. ricinus are the first inhibitors that specifically target a positive regulator of complement, properdin. They may provide new tools for the investigation of role of properdin in physiological and pathophysiological mechanisms. They may also be useful in disorders affecting the alternative complement pathway, Looking for and detecting the different selection pressures involved will help in understanding the evolution of multigene families and hematophagy in arthropods. © 2008 Couveur et al.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Evidence for the ‘Good Genes’ Model: Association of MHC Class II DRB Alleles with Ectoparasitism and Reproductive State in the Neotropical Lesser Bulldog Bat, Noctilio albiventris

    Get PDF
    The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The ‘good genes’ model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the ‘good genes’ model

    Bicuspid aortic valve

    No full text

    The enigma of caspase-2: the laymen's view

    No full text
    International audienceProteolysis of cellular substrates by caspases (cysteine-dependent aspartate-specific proteases) is one of the hallmarks of apoptotic cell death. Although the activation of apoptotic caspases is considered a 'late-stage' event in apoptosis signaling, past the commitment stage, one caspase family member, caspase-2, splits the cell death community into half-those searching for evidence of an apical initiator function of this molecule and those considering it as an amplifier of the apoptotic caspase cascade, at best, if relevant for apoptosis at all. This review screens past and present biochemical as well as genetic evidence for caspase-2 function in cell death signaling and beyond

    The enigma of caspase-2: the laymen's view

    No full text
    corecore