427 research outputs found

    Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature

    Get PDF
    The Bacteroidetes phylum is renowned for its ability to degrade a wide range of complex carbohydrates, a trait that has enabled its dominance in many diverse environments. The best studied species inhabit the human gut microbiome and use polysaccharide utilization loci (PULs), discrete genetic structures that encode proteins involved in the sensing, binding, deconstruction, and import of target glycans. In many environmental species, polysaccharide degradation is tightly coupled to the phylum-exclusive type IX secretion system (T9SS), which is used for the secretion of certain enzymes and is linked to gliding motility. In addition, within specific species these two adaptive systems (PULs and T9SS) are intertwined, with PUL-encoded enzymes being secreted by the T9SS. Here, we discuss the most noteworthy PUL and non-PUL mechanisms that confer specific and rapid polysaccharide degradation capabilities to the Bacteroidetes in a range of environments. We also acknowledge that the literature showcasing examples of PULs is rapidly expanding and developing a set of assumptions that can be hard to track back to original findings. Therefore, we present a simple universal description of conserved PUL functions and how they are determined, while proposing a common nomenclature describing PULs and their components, to simplify discussion and understanding of PUL systems

    Risk factors for race-day fatality in flat racing Thoroughbreds in Great Britain (2000 to 2013)

    Get PDF
    A key focus of the racing industry is to reduce the number of race-day events where horses die suddenly or are euthanased due to catastrophic injury. The objective of this study was therefore to determine risk factors for race-day fatalities in Thoroughbred racehorses, using a cohort of all horses participating in flat racing in Great Britain between 2000 and 2013. Horse-, race- and course-level data were collected and combined with all race-day fatalities, recorded by racecourse veterinarians in a central database. Associations between exposure variables and fatality were assessed using logistic regression analyses for (1) all starts in the dataset and (2) starts made on turf surfaces only. There were 806,764 starts in total, of which 548,571 were on turf surfaces. A total of 610 fatalities were recorded; 377 (61.8%) on turf. In both regression models, increased firmness of the going, increasing racing distance, increasing average horse performance, first year of racing and wearing eye cover for the first time all increased the odds of fatality. Generally, the odds of fatality also increased with increasing horse age whereas increasing number of previous starts reduced fatality odds. In the ‘all starts’ model, horses racing in an auction race were at 1.46 (95% confidence interval (CI) 1.06–2.01) times the odds of fatality compared with horses not racing in this race type. In the turf starts model, horses racing in Group 1 races were at 3.19 (95% CI 1.71–5.93) times the odds of fatality compared with horses not racing in this race type. Identification of novel risk factors including wearing eye cover and race type will help to inform strategies to further reduce the rate of fatality in flat racing horses, enhancing horse and jockey welfare and safety

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    No evidence for an association between the -36A>C phospholamban gene polymorphism and a worse prognosis in heart failure

    Get PDF
    Background: In Brazil, heart failure leads to approximately 25,000 deaths per year. Abnormal calcium handling is a hallmark of heart failure and changes in genes encoding for proteins involved in the re-uptake of calcium might harbor mutations leading to inherited cardiomyopathies. Phospholamban (PLN) plays a prime role in cardiac contractility and relaxation and mutations in the gene encoding PLN have been associated with dilated cardiomyopathy. In this study, our objective was to determine the presence of the -36A>C alteration in PLN gene in a Brazilian population of individuals with HF and to test whether this alteration is associated with heart failure or with a worse prognosis of patients with HF. Methods: We genotyped a cohort of 881 patients with HF and 1259 individuals from a cohort of individuals from the general population for the alteration -36A>C in the PLN gene. Allele and genotype frequencies were compared between groups (patients and control). In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotypic groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the -36A>C were compared regarding mortality incidence in HF patients. Results: No significant association was found between the study polymorphism and HF in our population. In addition, no association between PLN -36A>C polymorphism and demographic, clinical and functional characteristics and mortality incidence in this sample of HF patients was observed. Conclusion: Our data do not support a role for the PLN -36A>C alteration in modulating the heart failure phenotype, including its clinical course, in humans

    The origin of dust in galaxies revisited: the mechanism determining dust content

    Full text link
    The origin of cosmic dust is a fundamental issue in planetary science. This paper revisits the origin of dust in galaxies, in particular, in the Milky Way, by using a chemical evolution model of a galaxy composed of stars, interstellar medium, metals (elements heavier than helium), and dust. We start from a review of time-evolutionary equations of the four components, and then, we present simple recipes for the stellar remnant mass and yields of metal and dust based on models of stellar nucleosynthesis and dust formation. After calibrating some model parameters with the data from the solar neighborhood, we have confirmed a shortage of the stellar dust production rate relative to the dust destruction rate by supernovae if the destruction efficiency suggested by theoretical works is correct. If the dust mass growth by material accretion in molecular clouds is active, the observed dust amount in the solar neighborhood is reproduced. We present a clear analytic explanation of the mechanism for determining dust content in galaxies after the activation of accretion growth: a balance between accretion growth and supernova destruction. Thus, the dust content is independent of the uncertainty of the stellar dust yield after the growth activation. The timing of the activation is determined by a critical metal mass fraction which depends on the growth and destruction efficiencies. The solar system formation seems to have occurred well after the activation and plenty of dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure

    Seafloor character and sedimentary processes in eastern Long Island Sound and western Block Island Sound

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Geo-Marine Letters 26 (2006): 59-68, doi: 10.1007/s00367-006-0016-4.Multibeam bathymetric data and seismic-reflection profiles collected in eastern Long Island and western Block Island Sounds reveal previously unrecognized glacial features and modern bedforms. Glacial features include an ice-sculptured bedrock surface, a newly identified recessional moraine, exposed glaciolacustrine sediments, and remnants of stagnant-ice-contact deposits. Modern bedforms include fields of transverse sand waves, barchanoid waves, giant scour depressions, and pockmarks. Bedform asymmetry and scour around obstructions indicate that net sediment transport is westward across the northern par of the study area near Fishers Island and eastward across the southern par near Great Gull Island.This work was supported by the Coastal and Marine Geology Program of the U.S. Geological Survey, the Connecticut Department of Environmental Protection, and the Atlantic Hydrographic Branch of the National Oceanic and Atmospheric Administration

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres
    • …
    corecore