578 research outputs found

    Autologous lipotransfer can improve the outcomes of localised scleroderma

    Get PDF

    Melting mud in Earth's mantle

    Get PDF
    Melting of subducted sediment remains controversial, as direct observation of sediment melt generation at mantle depths is not possible. Geochemical fingerprints provide indirect evidence for subduction delivery of sediment to the mantle; however, sediment abundance in mantle-derived melt is generally low (0%–2%), and difficult to detect. Here we provide evidence for melting of subducted sediment in granite sampled from an exhumed mantle section. Peraluminous granite dikes that intrude peridotite in the Oman–United Arab Emirates ophiolite have U-Pb ages of 99.8 ± 3.3 Ma that predate obduction. The dikes have unusually high oxygen isotope (δ18O) values for whole rock (14–23‰) and quartz (20–22‰), and yield the highest δ18O zircon values known (14–28‰; values relative to Vienna standard mean ocean water [VSMOW]). The extremely high oxygen isotope ratios uniquely identify the melt source as high-δ18O marine sediment (pelitic and/or siliciceous mud), as no other source could produce granite with such anomalously high δ18O. Formation of high-δ18O sediment-derived (S-type) granite within peridotite requires subduction of sediment to the mantle, where it melted and intruded overlying mantle wedge. The granite suite described here contains the highest oxygen isotope ratios reported for igneous rocks, yet intruded mantle peridotite below the Mohorovičić seismic discontinuity, the most primitive oxygen isotope reservoir in the silicate Earth. Identifying the presence and quantifying the extent of sediment melting within the mantle has important implications for understanding subduction recycling of supracrustal material and effects on mantle heterogeneity over time.National Geographi

    Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

    Get PDF
    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C-C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.open302

    Genome-Wide Association Study of Clinical Outcome After Aneurysmal Subarachnoid Haemorrhage: Protocol

    Get PDF
    Aneurysmal subarachnoid haemorrhage (aSAH) results in persistent clinical deficits which prevent survivors from returning to normal daily functioning. Only a small fraction of the variation in clinical outcome following aSAH is explained by known clinical, demographic and imaging variables; meaning additional unknown factors must play a key role in clinical outcome. There is a growing body of evidence that genetic variation is important in determining outcome following aSAH. Understanding genetic determinants of outcome will help to improve prognostic modelling, stratify patients in clinical trials and target novel strategies to treat this devastating disease. This protocol details a two-stage genome-wide association study to identify susceptibility loci for clinical outcome after aSAH using individual patient-level data from multiple international cohorts. Clinical outcome will be assessed using the modified Rankin Scale or Glasgow Outcome Scale at 1-24 months. The stage 1 discovery will involve meta-analysis of individual-level genotypes from different cohorts, controlling for key covariates. Based on statistical significance, supplemented by biological relevance, top single nucleotide polymorphisms will be selected for replication at stage 2. The study has national and local ethical approval. The results of this study will be rapidly communicated to clinicians, researchers and patients through open-access publication(s), presentation(s) at international conferences and via our patient and public network

    High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 degrees C

    Get PDF
    Fabricating inorganic-organic hybrid perovskite solar cells (PSCs) on plastic substrates broadens their scope for implementation in real systems by imparting portability, conformability and allowing high-throughput production, which is necessary for lowering costs. Here we report a new route to prepare highly dispersed Zn2SnO4 (ZSO) nanoparticles at low-temperature (<100 degrees C) for the development of high-performance flexible PSCs. The introduction of the ZSO film significantly improves transmittance of flexible polyethylene naphthalate/indium-doped tin oxide (PEN/ITO)-coated substrate from similar to 75 to similar to 90% over the entire range of wavelengths. The best performing flexible PSC, based on the ZSO and CH3NH3PbI3 layer, exhibits steady-state power conversion efficiency (PCE) of 14.85% under AM 1.5G 100 mW . cm(-2) illumination. This renders ZSO a promising candidate as electron-conducting electrode for the highly efficient flexible PSC applications.ope

    Protein Diffusion in Mammalian Cell Cytoplasm

    Get PDF
    We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS

    Sequence-Dependent Fluorescence of Cyanine Dyes on Microarrays

    Get PDF
    Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5′-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5′ guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5′-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling

    Polymorphisms on SSC15q21-q26 Containing QTL for reproduction in Swine and its association with litter size

    Get PDF
    Several quantitative trait loci (QTL) for important reproductive traits (ovulation rate) have been identified on the porcine chromosome 15 (SSC15). To assist in the selection of positional candidate swine genes for these QTL on SSC15, twenty-one genes had already been assigned to SSC15 in a previous study in our lab, by using the radiation hybrid panel IMpRH. Further polymorphism studies were carried out on these positional candidate genes with four breeds of pigs (Duroc, Erhualian, Dahuabai and Landrace) harboring significant differences in reproduction traits. A total of nineteen polymorphisms were found in 21 genes. Among these, seven in six genes were used for association studies, whereby NRP2 polymorphism was found to be significantly (p < 0.05) associated with litter-size traits. NRP2 might be a candidate gene for pig-litter size based on its chromosome location (Du et al., 2006), significant association with litter-size traits and relationships with Sema and the VEGF super families
    • …
    corecore