12 research outputs found

    Discovertebral (Andersson) lesions in severe ankylosing spondylitis: a study using MRI and conventional radiography

    Get PDF
    The objective of this study is to investigate the prevalence of Andersson lesions (AL) in ankylosing spondylitis (AS) patients who will start anti-tumor necrosis factor (TNF) treatment. Radiographs and magnetic resonance imaging (MRI) of the spine were performed before therapy with anti-TNF. ALs were defined as discovertebral endplate destructions on MRI, associated with bone marrow edema and fat replacement or sclerosis, a decreased signal on T1, enhancement after contrast administration (gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA)), and increased signal on T2 and short tau inversion recovery (STIR). Additionally, conventional radiography showed a fracture line, irregular endplates, and increased sclerosis of adjacent vertebral bodies. Fifty-six AS patients were included, 68% males, mean age of 43 years, and mean disease duration of 11 years. The mean bath ankylosing spondylitis disease activity index was 6.4, and 24% of all patients had ankylosis. Only one patient showed a discovertebral abnormality with bone marrow edema of more than 50% of the vertebral bodies adjacent to the intervertebral disk of T7/T8 and T9/T10, a hypodense signal area on T1, and a high signal on STIR. Irregular endplates were depicted, and T1 after Gd-DTPA demonstrated high signal intensity around the disk margins. However, no fracture line was visible on conventional radiology, and therefore, this case was not considered to be an AL. No AL was detected in our AS patients, who were candidates for anti-TNF treatment. One patient showed a discovertebral abnormality on MRI, without a fracture line on conventional radiology. The relative small proportion of patients with a long-established disease might explain this finding for, particularly, an ankylosed spine is prone to develop an AL

    Marine fish traits follow fast-slow continuum across oceans

    Get PDF
    A fundamental challenge in ecology is to understand why species are found where they are and predict where they are likely to occur in the future. Trait-based approaches may provide such understanding, because it is the traits and adaptations of species that determine which environments they can inhabit. It is therefore important to identify key traits that determine species distributions and investigate how these traits relate to the environment. Based on scientific bottom-trawl surveys of marine fish abundances and traits of >1,200 species, we investigate trait-environment relationships and project the trait composition of marine fish communities across the continental shelf seas of the Northern hemisphere. We show that traits related to growth, maturation and lifespan respond most strongly to the environment. This is reflected by a pronounced “fast-slow continuum” of fish life-histories, revealing that traits vary with temperature at large spatial scales, but also with depth and seasonality at more local scales. Our findings provide insight into the structure of marine fish communities and suggest that global warming will favour an expansion of fast-living species. Knowledge of the global and local drivers of trait distributions can thus be used to predict future responses of fish communities to environmental change.Postprint2,92

    AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice

    Get PDF
    AIMS/HYPOTHESIS: Obesity is characterised by lipid accumulation in skeletal muscle, which increases the risk of developing insulin resistance and type 2 diabetes. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status and is activated in skeletal muscle by exercise, hormones (leptin, adiponectin, IL-6) and pharmacological agents (5-amino-4-imidazolecarboxamide ribonucleoside [AICAR] and metformin). Phosphorylation of acetyl-CoA carboxylase 2 (ACC2) at S221 (S212 in mice) by AMPK reduces ACC activity and malonyl-CoA content but the importance of the AMPK-ACC2-malonyl-CoA pathway in controlling fatty acid metabolism and insulin sensitivity is not understood; therefore, we characterised Acc2 S212A knock-in (ACC2 KI) mice. METHODS: Whole-body and skeletal muscle fatty acid oxidation and insulin sensitivity were assessed in ACC2 KI mice and wild-type littermates. RESULTS: ACC2 KI mice were resistant to increases in skeletal muscle fatty acid oxidation elicited by AICAR. These mice had normal adiposity and liver lipids but elevated contents of triacylglycerol and ceramide in skeletal muscle, which were associated with hyperinsulinaemia, glucose intolerance and skeletal muscle insulin resistance. CONCLUSIONS/INTERPRETATION: These findings indicate that the phosphorylation of ACC2 S212 is required for the maintenance of skeletal muscle lipid and glucose homeostasis

    Studying the metabolism of epithelial-mesenchymal plasticity using the seahorse XFe96 extracellular flux analyzer

    No full text
    The critical role of metabolism in facilitating cancer cell growth and survival has been demonstrated by a combination of methods including, but not limited to, genomic sequencing, transcriptomic and proteomic analyses, measurements of radio-labelled substrate flux and the high throughput measurement of oxidative metabolism in unlabelled live cells using the Seahorse Extracellular Flux (XF) technology. These studies have revealed that tumour cells exhibit a dynamic metabolic plasticity, using numerous pathways including both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to support cell proliferation, energy production and the synthesis of biomass. These advanced technologies have also demonstrated metabolic differences between cancer cell types, between molecular subtypes within cancers and between cell states. This has been exemplified by examining the transitions of cancer cells between epithelial and mesenchymal phenotypes, referred to as epithelial-mesenchymal plasticity (EMP). A growing number of studies are demonstrating significant metabolic alterations associated with these transitions, such as increased use of glycolysis by triple negative breast cancers (TNBC) or glutamine addiction in lung cancer. Models of EMP, including invasive cell lines and xenografts, isolated circulating tumour cells and metastatic tissue have been used to examine EMP metabolism. Understanding the metabolism supporting molecular and cellular plasticity and increased metastatic capacity may reveal metabolic vulnerabilities that can be therapeutically exploited. This chapter describes protocols for using the Seahorse Extracellular Flux Analyzer (XFe96), which simultaneously performs real-time monitoring of oxidative phosphorylation and glycolysis in living cells. As an example, we compare the metabolic profiles generated from two breast cancer sublines that reflect epithelial and mesenchymal phenotypes, respectively. We use this example to show how the methodology described can generate bioenergetic results that in turn can be correlated to EMP phenotypes. Normalisation of bioenergetic studies should be considered with respect to cell number, and to potential differences in mitochondrial mass, itself being an important bioenergetics endpoint
    corecore