61 research outputs found

    Polar vortex formation in giant-planet atmospheres due to moist convection

    Get PDF
    A strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.National Science Foundation (U.S.). Graduate Research FellowshipNational Science Foundation (U.S.) (ATM-0850639)National Science Foundation (U.S.) (AGS-1032244)National Science Foundation (U.S.) (AGS-1136480)United States. Office of Naval Research (N00014-14-1-0062

    Structure and dynamics of the shark assemblage off recife, northeastern Brazil

    Get PDF
    Understanding the ecological factors that regulate elasmobranch abundance in nearshore waters is essential to effectively manage coastal ecosystems and promote conservation. However, little is known about elasmobranch populations in the western South Atlantic Ocean. An 8-year, standardized longline and drumline survey conducted in nearshore waters off Recife, northeastern Brazil, allowed us to describe the shark assemblage and to monitor abundance dynamics using zero-inflated generalized additive models. This region is mostly used by several carcharhinids and one ginglymostomid, but sphyrnids are also present. Blacknose sharks, Carcharhinus acronotus, were mostly mature individuals and declined in abundance throughout the survey, contrasting with nurse sharks, Ginglymostoma cirratum, which proliferated possibly due to this species being prohibited from all harvest since 2004 in this region. Tiger sharks, Galeocerdo cuvier, were mostly juveniles smaller than 200 cm and seem to use nearshore waters off Recife between January and September. No long-term trend in tiger shark abundance was discernible. Spatial distribution was similar in true coastal species (i.e. blacknose and nurse sharks) whereas tiger sharks were most abundant at the middle continental shelf. The sea surface temperature, tidal amplitude, wind direction, water turbidity, and pluviosity were all selected to predict shark abundance off Recife. Interspecific variability in abundance dynamics across spatiotemporal and environmental gradients suggest that the ecological processes regulating shark abundance are generally independent between species, which could add complexity to multi-species fisheries management frameworks. Yet, further research is warranted to ascertain trends at population levels in the South Atlantic Ocean.State Government of Pernambuco, Brazil; Fundacao para a Ciencia e Tecnologia, Portugal [SFRH/BD/37065/2007]info:eu-repo/semantics/publishedVersio

    Mapping potential-vorticity dynamics on Jupiter. II: the Great Red Spot from Voyager 1 and 2 data

    No full text
    Maps of Ertel potential vorticity on isentropic surfaces (IPV) and quasi-geostrophic potential vorticity (QGPV) on isobaric surfaces in the vicinity of Jupiter's Great Red Spot (GRS) are derived by making use of a combination of velocity measurements, derived from the tracking of cloud features in Voyager 1 and 2 images, and thermal measurements from the Voyager 1 IRIS instrument. The thermal data were obtained during Voyager 1's closest approach to Jupiter. IPV and QGPV in the vicinity of the GRS show a clearly isolated anticyclonic patch in the troposphere, with a suggestion of some spiral structure. The relationship of IPV and QGPV q with the corresponding isentropic or isobaric stream function Κ near the GRS is not compatible with marginal stability with respect to Arnol'd's second stability theorem, and does not indicate a relaxed, maximum entropy structure except perhaps close to the tropopause. q(Κ) in the upper troposphere and lower stratosphere for both Ertel and QGPV is reasonably well defined within the GRS and on a different branch to the ambient zonal flow, though is less well defined close to the cloud tops where local thermodynamic forcing may be significant. The profile in the upper troposphere is consistent with an isolated ‘free mode’ structure for which the air inside the GRS has a different dynamical origin to the atmosphere outside. Copyright © 2006 Royal Meteorological Society</p

    3D balanced winds and dynamics in Jupiter's atmosphere from combined imaging and infrared observations

    No full text
    A series of analyses combining feature-tracking from visible images and infrared sounding observations obtained by Voyager I and 2 are presented for the region surrounding Jupiter's Great Red Spot. By making use of various dynamical balance constraints, fully three-dimensional maps of a number of meteorological variables (such as horizontal wind, isobaric geopotential height and vertical velocity) can be recovered. Such maps are of immense potential value in a variety of studies of atmospheres such as those of the outer planets, and some possible extensions of this approach to ongoing and future spacecraft missions are discussed. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved

    Mapping potential vorticity dynamics on Saturn: Zonal mean circulation from Cassini and Voyager data

    No full text
    Maps of Ertel potential vorticity on isentropic surfaces (IPV) and quasi-geostrophic potential vorticity (QGPV) are well established in dynamical meteorology as powerful sources of insight into dynamical processes involving 'balanced' flow (i.e. geostrophic or similar). Here we derive maps of zonal mean IPV and QGPV in Saturn's upper troposphere and lower stratosphere by making use of a combination of velocity measurements, derived from the combined tracking of cloud features in images from the Voyager and Cassini missions, and thermal measurements from the Cassini Composite Infrared Spectrometer (CIRS) instrument. IPV and QGPV are mapped and compared for the entire globe between latitudes 89{ring operator} S - 82{ring operator} N. As on Jupiter, profiles of zonally averaged PV show evidence for a step-like "stair-case" pattern suggestive of local PV homogenisation, separated by strong PV gradients in association with eastward jets. The northward gradient of PV (IPV or QGPV) is found to change sign in several places in each hemisphere, however, even when baroclinic contributions are taken into account. The stability criterion with respect to Arnol'd's second stability theorem may be violated near the peaks of westward jets. Visible, near-IR and thermal-IR Cassini observations have shown that these regions exhibit many prominent, large-scale eddies and waves, e.g. including 'storm alley'. This suggests the possibility that at least some of these features originate from instabilities of the background zonal flow. © 2009 Elsevier Ltd

    Mapping potential-vorticity dynamics on Jupiter. I: Zonal-mean circulation from Cassini and Voyager 1 data

    No full text
    Maps of Ertel potential vorticity on isentropic surfaces (IPV) and/or quasi-geostrophic potential vorticity (QGPV) are well established in dynamical meteorology as powerful sources of insight into dynamical processes involving 'balanced' flow. In the present study, we derive maps of zonal-mean IPV and QGPV in Jupiter's upper troposphere and lower stratosphere by making use of a combination of velocity measurements, derived from the tracking of cloud features in images from the Voyager 1 and 2 and Cassini missions, and thermal measurements from the Voyager 1 IRIS and Cassini CIRS instruments. IPV and QGPV are mapped and compared for the entire globe between latitudes ±55°. Profiles of zonally averaged PV show some evidence for a step-like pattern suggestive of local PV homogenization, separated by strong PV gradients in association with eastward jets, though on differing scales in the northern and southern hemispheres. The northward gradient of PV (IPV or QGPV) is found to change sign in several places in each hemisphere, even when baroclinic contributions are taken into account. The relationship of lateral gradients of IPV and QGPV with the corresponding mean zonal flows indicate that the northern hemisphere may be closer to marginal stability with respect to Arnol'd's second stability theorem than the southern hemisphere. © Royal Meteorological Society, 2006

    CHANGES TO SATURN'S ZONAL-MEAN TROPOSPHERIC THERMAL STRUCTURE AFTER THE 2010-2011 NORTHERN HEMISPHERE STORM

    No full text
    We use far-infrared (20-200 Όm) data from the Composite Infrared Spectrometer on the Cassini spacecraft to determine the zonal-mean temperature and hydrogen para-fraction in Saturn's upper troposphere from observations taken before and after the large northern hemisphere storm in 2010-2011. During the storm, zonal mean temperatures in the latitude band between approximately 25°N and 45°N (planetographic latitude) increased by about 3 K, while the zonal mean hydrogen para-fraction decreased by about 0.04 over the same latitudes, at pressures greater than about 300 mbar. These changes occurred over the same latitude range as the disturbed cloud band seen in visible images. The observations are consistent with low para-fraction gas being brought up from the level of the water cloud by the strong convective plume associated with the storm, while being heated by condensation of water vapor, and then advected zonally by the winds near the plume tops in the upper troposphere. © 2014. The American Astronomical Society. All rights reserved

    CHANGES TO SATURN'S ZONAL-MEAN TROPOSPHERIC THERMAL STRUCTURE AFTER THE 2010-2011 NORTHERN HEMISPHERE STORM

    No full text
    We use far-infrared (20-200 Όm) data from the Composite Infrared Spectrometer on the Cassini spacecraft to determine the zonal-mean temperature and hydrogen para-fraction in Saturn's upper troposphere from observations taken before and after the large northern hemisphere storm in 2010-2011. During the storm, zonal mean temperatures in the latitude band between approximately 25°N and 45°N (planetographic latitude) increased by about 3 K, while the zonal mean hydrogen para-fraction decreased by about 0.04 over the same latitudes, at pressures greater than about 300 mbar. These changes occurred over the same latitude range as the disturbed cloud band seen in visible images. The observations are consistent with low para-fraction gas being brought up from the level of the water cloud by the strong convective plume associated with the storm, while being heated by condensation of water vapor, and then advected zonally by the winds near the plume tops in the upper troposphere. © 2014. The American Astronomical Society. All rights reserved
    • 

    corecore