16,572 research outputs found

    Thermodiffusion in model nanofluids by molecular dynamics simulations

    Full text link
    In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decrease with nanoparticles concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass and internal stiffness) and of the solvent (quality and viscosity) various trends are exhibited. In all cases the single particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion 2 coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein like law

    Supersymmetry solution for finitely extensible dumbbell model

    Full text link
    Exact relaxation times and eigenfunctions for a simple mechanical model of polymer dynamics are obtained using supersymmetry methods of quantum mechanics. The model includes the finite extensibility of the molecule and does not make use of the self-consistently averaging approximation. The finite extensibility reduces the relaxation times when compared to a linear force. The linear viscoelastic behaviour is obtained in the form of the ``generalized Maxwell model''. Using these results, a numerical integration scheme is proposed in the presence of a given flow kinematics.Comment: 5 pages, 2 figure

    Droplet evaporation in one-component fluids: Dynamic van der Waals theory

    Full text link
    In a one-component fluid, we investigate evaporation of a small axysymmetric liquid droplet in the partial wetting condition on a heated wall at T∼0.9TcT\sim 0.9 T_c. In the dynamic van der Waals theory (Phys. Rev. E {\bf 75}, 036304 (2007)), we take into account the latent heat transport from liquid to gas upon evaporation. Along the gas-liquid interface, the temperature is nearly equal to the equilibrium coexisting temperature away from the substrate, but it rises sharply to the wall temperature close to the substrate. On an isothermal substrate, evaporation takes place mostly on a narrow interface region near the contact line in a late stage, which is a characteristic feature in one-component fluids.Comment: 6 pages, 6 figure

    Evidence from Rb–Sr mineral ages for multiple orogenic events in the Caledonides of Shetland, Scotland

    Get PDF
    Shetland occupies a unique central location within the North Atlantic Caledonides. Thirty-three new high-precision Rb–Sr mineral ages indicate a polyorogenic history. Ages of 723–702 Ma obtained from the vicinity of the Wester Keolka Shear Zone indicate a Neoproterozoic (Knoydartian) age and preclude its correlation with the Silurian Moine Thrust. Ordovician ages of c. 480–443 Ma obtained from the Yell Sound Group and the East Mainland Succession constrain deformation fabrics and metamorphic assemblages to have formed during Grampian accretionary orogenic events, broadly contemporaneously with orogenesis of the Dalradian Supergroup in Ireland and mainland Scotland. The relative paucity of Silurian ages is attributed to a likely location at a high structural level in the Scandian nappe pile relative to mainland Scotland. Ages of c. 416 and c. 411 Ma for the Uyea Shear Zone suggest a late orogenic evolution that has more in common with East Greenland and Norway than with northern mainland Scotland

    Magnetorotational-type instability in Couette-Taylor flow of a viscoelastic polymer liquid

    Full text link
    We describe an instability of viscoelastic Couette-Taylor flow that is directly analogous to the magnetorotational instability (MRI) in astrophysical magnetohydrodynamics, with polymer molecules playing the role of magnetic field lines. By determining the conditions required for the onset of instability and the properties of the preferred modes, we distinguish it from the centrifugal and elastic instabilities studied previously. Experimental demonstration and investigation should be much easier for the viscoelastic instability than for the MRI in a liquid metal. The analogy holds with the case of a predominantly toroidal magnetic field such as is expected in an accretion disk and it may be possible to access a turbulent regime in which many modes are unstable.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction

    Full text link
    The Gaussian Approximation, proposed originally by Ottinger [J. Chem. Phys., 90 (1) : 463-473, 1989] to account for the influence of fluctuations in hydrodynamic interactions in Rouse chains, is adapted here to derive a new mean-field approximation for the FENE spring force. This "FENE-PG" force law approximately accounts for spring-force fluctuations, which are neglected in the widely used FENE-P approximation. The Gaussian Approximation for hydrodynamic interactions is combined with the FENE-P and FENE-PG spring force approximations to obtain approximate models for finitely-extensible bead-spring chains with hydrodynamic interactions. The closed set of ODE's governing the evolution of the second-moments of the configurational probability distribution in the approximate models are used to generate predictions of rheological properties in steady and unsteady shear and uniaxial extensional flows, which are found to be in good agreement with the exact results obtained with Brownian dynamics simulations. In particular, predictions of coil-stretch hysteresis are in quantitative agreement with simulations' results. Additional simplifying diagonalization-of-normal-modes assumptions are found to lead to considerable savings in computation time, without significant loss in accuracy.Comment: 26 pages, 17 figures, 2 tables, 75 numbered equations, 1 appendix with 10 numbered equations Submitted to J. Chem. Phys. on 6 February 200

    Reactive self-heating model of aluminum spherical nanoparticles

    Get PDF
    Aluminum-oxygen reaction is important in many highly energetic, high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potential solves the nonlinear Poisson equation. In contrast with the Coulomb potential, a "double-layer" type solution for the potential and self-heating leads to enhanced oxidation rates. At maximal reaction temperature of 2000 C, our model predicts overall oxidation time scale in microseconds range, in agreement with experimental evidence.Comment: submitte

    The effects of organic farming on the soil physical environment

    Get PDF
    The aim of this research was to investigate the effects of organic farming practices on the development of soil physical properties, and in particular, soil structure in comparison with conventional agricultural management. The soil structure of organically and conventionally managed soils at one site was compared in a quantitative manner at different scales of observations using image analysis. Key soil physical and chemical properties were measured as well as the pore fractal geometry to characterise pore roughness. Organically managed soils had higher organic matter content and provided a more stable soil structure than conventionally managed soils. The higher porosity (%) at the macroscale in soil under conventional management was due to fewer larger pores while mesoand microscale porosity was found to be greater under organic management. Organically managed soils typically provided spatially well distributed pores of all sizes and of greater roughness compared to those under conventional management. These variations in the soil physical environment are likely to impact significantly on the performance of these soils for a number of key processes such as crop establishment and water availabilit

    Channel Flow of a Tensorial Shear-Thinning Maxwell Model: Lattice Boltzmann Simulations

    Full text link
    We introduce a nonlinear generalized tensorial Maxwell-type constitutive equation to describe shear-thinning glass-forming fluids, motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions. The model captures a nonvanishing dynamical yield stress at the glass transition and incorporates normal-stress differences. A modified lattice-Boltzmann (LB) simulation scheme is presented that includes non-Newtonian contributions to the stress tensor and deals with flow-induced pressure differences. We test this scheme in pressure-driven 2D Poiseuille flow of the nonlinear generalized Maxwell fluid. In the steady state, comparison with an analytical solution shows good agreement. The transient dynamics after startup and cessation of the pressure gradient are studied; the simulation reproduces a finite stopping time for the cessation flow of the yield-stress fluid in agreement with previous analytical estimates
    • …
    corecore