52 research outputs found
Racial and Ethnic Variations in Knowledge and Attitudes about Genetic Testing
This study was designed to shed light on whether differences in utilization of genetic testing by African-Americans, Latinos, and non-Hispanic Whites are due primarily to different preferences, or whether they instead reflect other values and beliefs or differential access. It explores the values, attitudes, and beliefs of African-Americans, Latinos, and non-Hispanic Whites with respect to genetic testing by means of a telephone survey of representative samples of these three groups. The study finds clear evidence that Latinos and African-Americans are, if anything, more likely to express preferences for both prenatal and adult genetic testing than White respondents. At the same time, they hold other beliefs and attitudes that may conflict with, and override, these preferences in specific situations. African-Americans and Latinos are also less knowledgeable about genetic testing than non-Hispanic Whites, and they are less likely to have the financial resources or insurance coverage that would facilitate access to testing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63127/1/109065704323016012.pd
Validation of a Single-Nucleotide Polymorphism-Based Non-Invasive Prenatal Test in Twin Gestations : Determination of Zygosity, Individual Fetal Sex, and Fetal Aneuploidy
We analyzed maternal plasma cell-free DNA samples from twin pregnancies in a prospective blinded study to validate a single-nucleotide polymorphism (SNP)-based non-invasive prenatal test (NIPT) for zygosity, fetal sex, and aneuploidy. Zygosity was evaluated by looking for either one or two fetal genome complements, fetal sex was evaluated by evaluating Y-chromosome loci, and aneuploidy was assessed through SNP ratios. Zygosity was correctly predicted in 100% of cases (93/93; 95% confidence interval (CI) 96.1%-100%). Individual fetal sex for both twins was also called with 100% accuracy (102/102; 95% weighted CI 95.2%-100%). All cases with copy number truth were also correctly identified. The dizygotic aneuploidy sensitivity was 100% (10/10; 95% CI 69.2%-100%), and overall specificity was 100% (96/96; 95% weighted CI, 94.8%-100%). The mean fetal fraction (FF) of monozygotic twins (n = 43) was 13.0% (standard deviation (SD), 4.5%); for dizygotic twins (n = 79), the mean lower FF was 6.5% (SD, 3.1%) and the mean higher FF was 8.1% (SD, 3.5%). We conclude SNP-based NIPT for zygosity is of value when chorionicity is uncertain or anomalies are identified. Zygosity, fetal sex, and aneuploidy are complementary evaluations that can be carried out on the same specimen as early as 9 weeks' gestation
Safety and efficacy of vanzacaftor–tezacaftor–deutivacaftor in adults with cystic fibrosis: randomised, double-blind, controlled, phase 2 trials
Background
Elexacaftor–tezacaftor–ivacaftor has been shown to be safe and efficacious in people with cystic fibrosis and at least one F508del allele. Our aim was to identify a novel cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination capable of further increasing CFTR-mediated chloride transport, with the potential for once-daily dosing.
Methods
We conducted two phase 2 clinical trials to assess the safety and efficacy of a once-daily combination of vanzacaftor–tezacaftor–deutivacaftor in participants with cystic fibrosis who were aged 18 years or older. A phase 2 randomised, double-blind, active-controlled study (VX18-561-101; April 17, 2019, to Aug 20, 2020) was carried out to compare deutivacaftor monotherapy with ivacaftor monotherapy in participants with CFTR gating mutations, following a 4-week ivacaftor monotherapy run-in period. Participants were randomly assigned to receive either ivacaftor 150 mg every 12 h, deutivacaftor 25 mg once daily, deutivacaftor 50 mg once daily, deutivacaftor 150 mg once daily, or deutivacaftor 250 mg once daily in a 1:1:2:2:2 ratio. The primary endpoint was absolute change in ppFEV1 from baseline at week 12. A phase 2 randomised, double-blind, controlled, proof-of-concept study of vanzacaftor–tezacaftor–deutivacaftor (VX18-121-101; April 30, 2019, to Dec 10, 2019) was conducted in participants with cystic fibrosis and heterozygous for F508del and a minimal function mutation (F/MF genotypes) or homozygous for F508del (F/F genotype). Participants with F/MF genotypes were randomly assigned 1:2:2:1 to receive either 5 mg, 10 mg, or 20 mg of vanzacaftor in combination with tezacaftor–deutivacaftor or a triple placebo for 4 weeks, and participants with the F/F genotype were randomly assigned 2:1 to receive either vanzacaftor (20 mg)–tezacaftor–deutivacaftor or tezacaftor–ivacaftor active control for 4 weeks, following a 4-week tezacaftor–ivacaftor run-in period. Primary endpoints for part 1 and part 2 were safety and tolerability and absolute change in ppFEV1 from baseline to day 29. Secondary efficacy endpoints were absolute change from baseline at day 29 in sweat chloride concentrations and Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score. These clinical trials are registered with ClinicalTrials.gov, NCT03911713 and NCT03912233, and are complete.
Findings
In study VX18-561-101, participants treated with deutivacaftor 150 mg once daily (n=23) or deutivacaftor 250 mg once daily (n=24) had mean absolute changes in ppFEV1 of 3·1 percentage points (95% CI –0·8 to 7·0) and 2·7 percentage points (–1·0 to 6·5) from baseline at week 12, respectively, versus –0·8 percentage points (–6·2 to 4·7) with ivacaftor 150 mg every 12 h (n=11); the deutivacaftor safety profile was consistent with the established safety profile of ivacaftor 150 mg every 12 h. In study VX18-121-101, participants with F/MF genotypes treated with vanzacaftor (5 mg)–tezacaftor–deutivacaftor (n=9), vanzacaftor (10 mg)–tezacaftor–deutivacaftor (n=19), vanzacaftor (20 mg)–tezacaftor–deutivacaftor (n=20), and placebo (n=10) had mean changes relative to baseline at day 29 in ppFEV1 of 4·6 percentage points (−1·3 to 10·6), 14·2 percentage points (10·0 to 18·4), 9·8 percentage points (5·7 to 13·8), and 1·9 percentage points (−4·1 to 8·0), respectively, in sweat chloride concentration of −42·8 mmol/L (–51·7 to –34·0), −45·8 mmol/L (95% CI –51·9 to –39·7), −49·5 mmol/L (–55·9 to –43·1), and 2·3 mmol/L (−7·0 to 11·6), respectively, and in CFQ-R respiratory domain score of 17·6 points (3·5 to 31·6), 21·2 points (11·9 to 30·6), 29·8 points (21·0 to 38·7), and 3·3 points (−10·1 to 16·6), respectively. Participants with the F/F genotype treated with vanzacaftor (20 mg)–tezacaftor–deutivacaftor (n=18) and tezacaftor–ivacaftor (n=10) had mean changes relative to baseline (taking tezacaftor–ivacaftor) at day 29 in ppFEV1 of 15·9 percentage points (11·3 to 20·6) and −0·1 percentage points (−6·4 to 6·1), respectively, in sweat chloride concentration of −45·5 mmol/L (−49·7 to −41·3) and −2·6 mmol/L (−8·2 to 3·1), respectively, and in CFQ-R respiratory domain score of 19·4 points (95% CI 10·5 to 28·3) and −5·0 points (−16·9 to 7·0), respectively. The most common adverse events overall were cough, increased sputum, and headache. One participant in the vanzacaftor–tezacaftor–deutivacaftor group had a serious adverse event of infective pulmonary exacerbation and another participant had a serious rash event that led to treatment discontinuation. For most participants, adverse events were mild or moderate in severity.
Interpretation
Once-daily dosing with vanzacaftor–tezacaftor–deutivacaftor was safe and well tolerated and improved lung function, respiratory symptoms, and CFTR function. These results support the continued investigation of vanzacaftor–tezacaftor–deutivacaftor in phase 3 clinical trials compared with elexacaftor–tezacaftor–ivacaftor.
Funding
Vertex Pharmaceuticals
Vanzacaftor–tezacaftor–deutivacaftor versus elexacaftor–tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years and older (SKYLINE Trials VX20-121-102 and VX20-121-103): results from two randomised, active-controlled, phase 3 trials
Background
The goal of cystic fibrosis transmembrane conductance regulator (CFTR) modulators is to reach normal CFTR function in people with cystic fibrosis. Vanzacaftor–tezacaftor–deutivacaftor restored CFTR function in vitro and in phase 2 trials in participants aged 18 years and older resulting in improvements in CFTR function, as measured by sweat chloride concentrations and lung function as measured by spirometry. We aimed to evaluate the efficacy and safety of vanzacaftor–tezacaftor–deutivacaftor compared with standard of care elexacaftor–tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years and older.
Methods
In two randomised, active-controlled, double-blind, phase 3 trials, individuals aged 12 years and older with stable cystic fibrosis with F508del-minimal function (SKYLINE Trial VX20-121-102) or with F508del-F508del, F508del-residual function, F508del-gating, or elexacaftor–tezacaftor–ivacaftor-responsive-non-F508del genotypes (SKYLINE Trial VX20-121-103) were enrolled at 126 and 159 international sites, respectively. Eligible individuals were entered into a 4-week run-in period, during which they received elexacaftor (200 mg once daily), tezacaftor (100 mg once daily), and ivacaftor (150 mg once every 12 h) as two fixed-dose combination tablets in the morning and one ivacaftor tablet in the evening. They were then randomly assigned (1:1) to either elexacaftor (200 mg once daily), tezacaftor (100 mg once daily), and ivacaftor (150 mg once every 12 h) as two fixed-dose combination tablets in the morning and one ivacaftor tablet in the evening, or vanzacaftor (20 mg once daily), tezacaftor (100 mg once daily), and deutivacaftor (250 mg once daily) as two fixed-dose combination tablets in the morning, for the 52-week treatment period. All participants received matching placebo tablets to maintain the treatment blinding. Randomisation was done using an interactive web-response system and stratified by age, FEV1 % predicted, sweat chloride concentration, and previous CFTR modulator use, and also by genotype for Trial VX20-121-103. The primary endpoint for both trials was absolute change in FEV1 % predicted from baseline (most recent value before treatment on day 1) through week 24 (with non-inferiority of vanzacaftor–tezacaftor–deutivacaftor shown if the lower bound of the 95% CI for the primary endpoint was –3·0 or higher). Efficacy was assessed in all participants with the intended CFTR genotype who were randomly assigned to treatment and received at least one dose of study treatment during the treatment period. Safety was assessed in all participants who received at least one dose of study drug during the treatment period. These trials are registered with ClinicalTrials.gov, NCT05033080 (Trial VX20-121-102) and NCT05076149 (Trial VX20-121-103), and are now complete.
Findings
In Trial VX20-121-102 between Sept 14, 2021, and Oct 18, 2022, 488 individuals were screened, of whom 435 entered the 4-week run-in period, and subsequently 398 were randomly assigned and received at least one dose of elexacaftor–tezacaftor–ivacaftor (n=202) or vanzacaftor–tezacaftor–deutivacaftor (n=196). Median age was 31·0 years (IQR 22·6–38·5), 163 (41%) of 398 participants were female, 235 (59%) were male, and 388 (97%) were White. In Trial VX20-121-103, between Oct 27, 2021, and Oct 26, 2022, 699 individuals were screened, of whom 597 entered the 4-week run-in period, and subsequently 573 participants were randomly assigned and received at least one dose of elexacaftor–tezacaftor–ivacaftor (n=289) or vanzacaftor–tezacaftor–deutivacaftor (n=284). Median age was 33·1 years (IQR 24·5–42·2), 280 (49%) of 573 participants were female, 293 (51%) were male, and 532 (93%) were White. The absolute change in least squares mean FEV1 % predicted from baseline through week 24 for Trial VX20-121-102 was 0·5 (SE 0·3) percentage points in the vanzacaftor–tezacaftor–deutivacaftor group versus 0·3 (0·3) percentage points in the elexacaftor–tezacaftor–ivacaftor group (least squares mean treatment difference of 0·2 percentage points [95% CI –0·7 to 1·1]; p<0·0001), and for Trial VX20-121-103, was 0·2 (SE 0·3) percentage points in the vanzacaftor–tezacaftor–deutivacaftor group versus 0·0 (0·2) percentage points in the elexacaftor–tezacaftor–ivacaftor group (least squares mean treatment difference 0·2 percentage points [95% CI –0·5 to 0·9]; p<0·0001). Most adverse events were mild or moderate, with the most common being infective pulmonary exacerbation (133 [28%] of 480 participants in the pooled vanzacaftor–tezacaftor–deutivacaftor group vs 158 [32%] of 491 in the pooled elexacaftor–tezacaftor–ivacaftor group), cough (108 [23%] vs 101 [21%]), COVID-19 (107 [22%] vs 127 [26%]), and nasopharyngitis (102 [21%] vs 95 [19%]).
Interpretation
Vanzacaftor–tezacaftor–deutivacaftor is non-inferior to elexacaftor–tezacaftor–ivacaftor in terms of FEV1 % predicted, and is safe and well tolerated. Once daily dosing with vanzacaftor–tezacaftor–deutivacaftor reduces treatment burden, potentially improving adherence, compared with the twice daily regimen of the current standard of care. The restoration of CFTR function and the potential variants treated are also considerations that should be compared with currently available CFTR modulators.
Funding
Vertex Pharmaceuticals
Evidence-Based Guidelines on Health Promotion for Older People
The central aim of the healthPROelderly project was to contribute fundamentally to the development of health promotion for older people through producing guidelines and recommendations for potential actors in this field at EU, national and local level. The specific objectives of the healthPROelderly project were:
? to carry out a literature review concerning health promotion of older people in each of the participating countries.
? to identify models for health promotion for older people in each of the participating countries, evaluate three of them in each country and make them available in the form of a database on the website (www.healthproelderly.com).
? to inform and raise the awareness among experts and authorities throughout the EU about the issue of ageing and the impact of demographic change on our society
- …
