42 research outputs found
A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice–volcanic interaction
Controversy exists over the extent of glaciation in Eastern Asia at the Last Glacial Maximum:
complete ice sheet cover vs. restricted mountain icefields (an area discrepancy equivalent to
3.7 Greenland Ice Sheets). Current arguments favour the latter. However, significant last
glacial ice-rafted debris (IRD) exists in NW Pacific ocean cores, which must have been
sourced from a major ice sheet somewhere bordering the North Pacific. The origin of this IRD
is addressed through a combination of marine core analysis, iceberg trajectory modelling and
remote sensing of glacial geomorphology. We find compelling evidence for two stages of
glaciation centred on the Kamchatka area of maritime southeast Russia during the last glacial,
with ice extent intermediate in size between previous maximum and minimum
reconstructions. Furthermore, a significant increase in iceberg flux precedes, and
accompanies, a substantial marine core ash deposit at around 40ka BP. We speculate that
rapid decay of the first stage of the ice sheet may have triggered substantial volcanic activity
The variability of the Atlantic meridional circulation since 1980, as hindcast by a data-driven nonlinear systems model
The Atlantic meridional overturning circulation (AMOC), an important component of the climate system, has only been directly measured since the RAPID array’s installation across the Atlantic at 26°N in 2004. This has shown that the AMOC strength is highly variable on monthly timescales; however, after an abrupt, short-lived, halving of the strength of the AMOC early in 2010, its mean has remained ~ 15% below its pre-2010 level. To attempt to understand the reasons for this variability, we use a control systems identification approach to model the AMOC, with the RAPID data of 2004–2017 providing a trial and test data set. After testing to find the environmental variables, and systems model, that allow us to best match the RAPID observations, we reconstruct AMOC variation back to 1980. Our reconstruction suggests that there is inter-decadal variability in the strength of the AMOC, with periods of both weaker flow than recently, and flow strengths similar to the late 2000s, since 1980. Recent signs of weakening may therefore not reflect the beginning of a sustained decline. It is also shown that there may be predictive power for AMOC variability of around 6 months, as ocean density contrasts between the source and sink regions for the North Atlantic Drift, with lags up to 6 months, are found to be important components of the systems model
Tracking Nonlinear Correlation for Complex Dynamic Systems Using a Windowed Error Reduction Ratio Method
Studying complex dynamic systems is usually very challenging due to limited prior knowledge and high complexity of relationships between interconnected components. Current methods either are like a “black box” that is difficult to understand and relate back to the underlying system or have limited universality and applicability due to too many assumptions. This paper proposes a time-varying Nonlinear Finite Impulse Response model to estimate the multiple features of correlation among measurements including direction, strength, significance, latency, correlation type, and nonlinearity. The dynamic behaviours of correlation are tracked through a sliding window approach based on the Blackman window rather than the simple truncation by a Rectangular window. This method is particularly useful for a system that has very little prior knowledge and the interaction between measurements is nonlinear, time-varying, rapidly changing, or of short duration. Simulation results suggest that the proposed tracking approach significantly reduces the sensitivity of correlation estimation against the window size. Such a method will improve the applicability and robustness of correlation analysis for complex systems. A real application to environmental changing data demonstrates the potential of the proposed method by revealing and characterising hidden information contained within measurements, which is usually “invisible” for conventional methods
Early-nineteenth-century southern African precipitation reconstructions from ships' logbooks
Atmospheric circulation in the oceans surrounding southern Africa plays an important role in determining its precipitation. This study uses wind information recorded in ships’ logbooks in order to statistically reconstruct summer and winter season precipitation at four southern African weather stations from 1796 to 1854. The reconstruction was obtained by first relating gridded 8° × 8° NCEP-DOE reanalysis seasonal mean wind vectors in the adjacent oceans to station precipitation. Over a 30-year calibration period (1979–2008), significant correlations between wind and precipitation at Cape Town, Mthatha and Royal National Park showed particular correspondence with those areas with the greatest concentration of logbook observations. Principal component regression was used to assess the potential of the dominant patterns of variability in the wind vectors as predictors to reconstruct precipitation. Cross-validation in the calibration period gave confidence that precipitation could be reconstructed at several stations across South Africa, meaning the regression relationships derived in the calibration period could be applied to the gridded seasonal mean logbook data to produce reconstructions of precipitation from 1796 to 1854. The reconstructions show a degree of correspondence with other regional data sets. For instance, the decade beginning in 1810 was the wettest of the period at Mthatha and Royal National Park, while the 1820s were the driest. At Cape Town, the 1820s were the wettest decade, with drier conditions observed in the 1830s. An index of west–east circulation in the summer season revealed correspondence with two documentary reconstructions of El Niño events and increased westerliness, although this did not always result in drier conditions. Attention is also drawn to the remaining 3000 yet to be digitised English East India Company logbooks which would provide a high-resolution picture of atmospheric circulation back to 1700 in the region under consideration
Reconstructing El Niño Southern Oscillation using data from ships’ logbooks, 1815–1854. Part II: Comparisons with existing ENSO reconstructions and implications for reconstructing ENSO diversity
© 2017 The Author(s) A systematic comparison of El Niño Southern Oscillation reconstructions during the early to mid-nineteenth century is presented using a range of proxy and documentary sources. Reconstructions of the boreal winter Southern Oscillation Index (SOI) using data from ships’ logbooks presented in a companion paper are evaluated and compared to previous ENSO reconstructions. Comparisons between ENSO reconstructions and the instrumental SOI during a period of overlap (1876–1977) are made. These same proxy and documentary reconstructions are then compared to the logbook-based reconstructions, over 1815–1854. The logbook-based reconstructions compare best with a recent multi-proxy reconstruction that used signals taken from different teleconnection regions, and they have an improved agreement with multi-proxy records compared to a previous attempt to reconstruct the SOI from ships’ logbook data. The logbook-based and the multi-proxy reconstructions are found to capture El Niño events better than La Niña events, and East Pacific El Niño events better than Central Pacific El Niño events, thus suggesting a degree of bias in the historical reconstructions. These findings have important implications for future ENSO reconstructions, with a need for an increased understanding of the effects of different ENSO flavours for future reconstructions
The impact of icebergs of sub-Antarctic origin on Southern Ocean ice-rafted debris distributions
The presence of widespread terrigenous material of an ice-rafted origin in Quaternary sediments of the Southern Ocean has been recognized for almost 150 years. Normally this material has been ascribed to deposits from icebergs of continental Antarctic origin. However, during Quaternary glaciations there have been periods of extensive land ice across the sub-Antarctic, on both islands scattered around most of the circumpolar extent of the Southern Ocean, as well as in Patagonia, so providing alternative sources for debris-carrying icebergs. Here a relatively high resolution ocean and iceberg model is used to study the potential distribution of ice-rafted debris (IRD) from the range of past ice sources around the Southern Ocean. It is shown that IRD found in marine cores of the Southern Ocean is most likely to have derived from the Antarctic continent in some regions, particularly of the South Atlantic, but that for extensive regions of the Southern Ocean sub-Antarctic sources of IRD, rather than the continent itself, are more likely. This is particularly true equatorward of 55oS, away from the core continental iceberg outflow from the Weddell gyre. It is argued that the glaciated sub-Antarctic cannot be neglected in explaining past IRD records in the Southern Ocean. This has implications not just for reconstructing the history of glaciation in the sub-Antarctic, but also for understanding past variation in the upper ocean circulation within the Quaternary Southern Ocean
Meteorological effects of the solar eclipse of 20 March 2015: analysis of UK Met Office automatic weather station data and comparison with automatic weather station data from the Faroes and Iceland.
Here, we analyse high-frequency (1 min) surface air temperature, mean sea-level pressure (MSLP), wind speed and direction and cloud-cover data acquired during the solar eclipse of 20 March 2015 from 76 UK Met Office weather stations, and compare the results with those from 30 weather stations in the Faroe Islands and 148 stations in Iceland. There was a statistically significant mean UK temperature drop of 0.83±0.63°C, which occurred over 39 min on average, and the minimum temperature lagged the peak of the eclipse by about 10 min. For a subset of 14 (16) relatively clear (cloudy) stations, the mean temperature drop was 0.91±0.78 (0.31±0.40)°C but the mean temperature drops for relatively calm and windy stations were almost identical. Mean wind speed dropped significantly by 9% on average during the first half of the eclipse. There was no discernible effect of the eclipse on the wind-direction or MSLP time series, and therefore we can discount any localized eclipse cyclone effect over Britain during this event. Similar changes in air temperature and wind speed are observed for Iceland, where conditions were generally clearer, but here too there was no evidence of an eclipse cyclone; in the Faroes, there was a much more muted meteorological signature.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'
Impact of giant iceberg A68A on the physical conditions of the surface South Atlantic, derived using remote sensing
Giant icebergs release cold, fresh meltwater as they drift, perturbing the physical conditions of the surface ocean. This study uses satellite-derived sea surface salinity and temperature measurements to explore the physical impact of supergiant iceberg A68A between September 2020 and June 2021. During A68A's drift through the Scotia Sea in austral spring, gradual but persistent edge-wasting contributed to a freshening of several psu extending hundreds of kilometers ahead of the iceberg, whilst the cooling signal was more pronounced in the iceberg's wake. The magnitude of the physical perturbation intensified during A68A's breakup near South Georgia. Several large meltwater lenses surrounding the descendant icebergs displayed temperature anomalies of up to −4.5°C, whilst the salinity measurements indicated a surface (skin-depth) anomaly regularly exceeding order −10 psu. The perturbations stretched at times >1,000 km and persisted for >2 months following A68A's melt in April 2021
NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution
An established iceberg module, ICB, is used interactively with the Nucleus for European Modelling of the Ocean (NEMO) ocean model in a new implementation, NEMO–ICB (v1.0). A 30-year hindcast (1976–2005) simulation with an eddy-permitting (0.25°) global configuration of NEMO–ICB is undertaken to evaluate the influence of icebergs on sea ice, hydrography, mixed layer depths (MLDs), and ocean currents, through comparison with a control simulation in which the equivalent iceberg mass flux is applied as coastal runoff, a common forcing in ocean models. In the Southern Hemisphere (SH), drift and melting of icebergs are in balance after around 5 years, whereas the equilibration timescale for the Northern Hemisphere (NH) is 15–20 years. Iceberg drift patterns, and Southern Ocean iceberg mass, compare favourably with available observations. Freshwater forcing due to iceberg melting is most pronounced very locally, in the coastal zone around much of Antarctica, where it often exceeds in magnitude and opposes the negative freshwater fluxes associated with sea ice freezing. However, at most locations in the polar Southern Ocean, the annual-mean freshwater flux due to icebergs, if present, is typically an order of magnitude smaller than the contribution of sea ice melting and precipitation. A notable exception is the southwest Atlantic sector of the Southern Ocean, where iceberg melting reaches around 50% of net precipitation over a large area. Including icebergs in place of coastal runoff, sea ice concentration and thickness are notably decreased at most locations around Antarctica, by up to ~ 20% in the eastern Weddell Sea, with more limited increases, of up to ~ 10% in the Bellingshausen Sea. Antarctic sea ice mass decreases by 2.9%, overall. As a consequence of changes in net freshwater forcing and sea ice, salinity and temperature distributions are also substantially altered. Surface salinity increases by ~ 0.1 psu around much of Antarctica, due to suppressed coastal runoff, with extensive freshening at depth, extending to the greatest depths in the polar Southern Ocean where discernible effects on both salinity and temperature reach 2500 m in the Weddell Sea by the last pentad of the simulation. Substantial physical and dynamical responses to icebergs, throughout the global ocean, are explained by rapid propagation of density anomalies from high-to-low latitudes. Complementary to the baseline model used here, three prototype modifications to NEMO–ICB are also introduced and discussed
Influence of synoptic atmospheric conditions on movement of individual sea-ice floes in Fram Strait, late summer 2010
In this paper we investigate the effect on sea-ice movement of changes in the synoptic
atmospheric conditions in late boreal summer 2010. Our study area is the western Fram Strait, a crucial
passage for the transport of ice out of the Arctic basin. Ice dynamics here affect the movement of ice in
the East Greenland Current, the transpolar drift and ice extent in the Arctic Ocean. In contrast to other
times of the year, when the Fram Strait wind field is characterized by strong, persistent northerlies, we
show that the weaker, more variable winds typical during late summer for the Fram Strait can slow
movement of ice floes out of the area, thus slowing the export of ice from the Arctic Ocean at the end of
summer, a time crucial for ice export. The Arctic Ocean could lose even more of the ice that survives
the summer if this was not the case. This would leave the Arctic Ocean in an even more vulnerable
position with regard to the amount of multi-year ice remaining the following summer
