47 research outputs found
The interplay of wind and uplift facilitates over-water flight in facultative soaring birds.
Flying over the open sea is energetically costly for terrestrial birds. Despite this, over-water journeys of many birds, sometimes hundreds of kilometres long, are uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions, specifically wind and uplift, in subsidizing over-water flight at a global scale. We first established that ΔT, the temperature difference between sea surface and air, is a meaningful proxy for uplift over water. Using this proxy, we showed that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds are associated with favourable uplift conditions. We then analysed route selection over the open sea for five facultative soaring species, representative of all major migratory flyways. The birds maximized wind support when selecting their sea-crossing routes and selected greater uplift when suitable wind support was available. They also preferred routes with low long-term uncertainty in wind conditions. Our findings suggest that, in addition to wind, uplift may play a key role in the energy seascape for bird migration that in turn determines strategies and associated costs for birds crossing ecological barriers such as the open sea
Use of secondary forests by understory birds in a fragmented landscape in central Amazonia
Rates of deforestation in the Brazilian Amazon have increased since 1991 and forecasts are not optimistic about the slowing of this process. Some authors believe that the Amazon may be experiencing a massive process of species extinction. However, the deforestation is accompanied by the expansion of secondary forests that are established in the abandoned areas. The trend is an increase in secondary forests cover, resulting in a mosaic of primary forest (FP) and fragments separated by an array of secondary forests (FS). In this scenario, the prediction of a massive extinction could be wrong if many species could survive in the secondary forests. To assess the importance of FS for the understory birds we sampled areas in regeneration and a continuous forest of a fragmented landscape. We conducted mist netting (24 nets/day) for six consecutive days/month, for 8 months (May-November) in 2009. Some forest species as do not seem to be adapted to the secondary forest environment and their occurrences are restricted to continuous forest environments. But most focal species showed no significant difference in apparent survival rates between the enviroments, suggesting that these species inhabit the secondary forest and the primary forest similarly. Because most of the matrix in fragmented landscapes are composed by secondary forests, such results highlights the conservation value that these habitats present in the long term. Thus, FS should be regarded as dynamic matrix that not only allows the movement of individuals but also function as habitat for many species typical of FP.Na Amazônia, as taxas de desmatamento crescem desde 1991 e as previsões não são otimistas quanto à desaceleração desse processo. A devastação da floresta é acompanhada de uma expansão de florestas secundárias (FS) que se estabelecem nas áreas abandonadas. A tendência é um aumento de florestas secundárias, resultando num mosaico de floresta contínua e fragmentos separados por uma matriz de FS. Nesse cenário, autores acreditam que a Amazônia pode passar por um processo massivo de extinção de espécies. Por outro lado, a previsão de um processo massivo de extinção pode ser equivocada, pois muitas espécies florestais poderiam sobreviver nas florestas secundárias. Para avaliar o valor das florestas secundárias para espécies florestais amostramos por oito meses com redes de neblina uma capoeira (FS) em regeneração e uma floresta primária (FP) de uma paisagem fragmentada. Algumas espécies não foram capturadas na capoeira e aparentemente evitam esse tipo de hábitat. No entanto, a maioria das espécies do grupo focal não apresentou diferença na sobrevivência aparente entre os ambientes, o que nos indica que estão habitando a capoeira e a floresta primária da mesma forma. Na realidade amazônica, onde grande parte da matriz é composta por floresta secundária, a matriz tem valor para conservação e deve ser analisada como um elemento dinâmico que não apenas permite a movimentação de indivíduos, mas também serve de hábitat para muitas espécies de floresta primária. Mas ressaltamos que é fundamental a preservação de áreas de floresta primária que servirão de fonte às florestas secundárias adjacentes
What happens if density increases? Conservation implications of population influx into refuges
Sudden catastrophic events like fires, hurricanes, tsunamis, landslides and deforestation increase population densities in habitat fragments, as fleeing animals encroach into these refuges. Such sudden overcrowding will trigger transient fluctuations in population size in the refuges, which may expose refuge populations to an increased risk of extinction. Until recently, detailed information about the operation of density dependence in stage-structured populations, and tools for quantifying the effects of transient dynamics, have not been available, so that exploring the extinction risk of such transient fluctuations has been intractable. Here, we use such recently developed tools to show that extinction triggered by overcrowding can threaten populations in refuges. Apart from situations where density dependence acts on survival, our results indicate that short-lived species may be more at risk than longer-lived species. Because dynamics in local populations may be critical for the preservation of metapopulations and rare species, we argue that this aspect warrants further attention from conservation biologists. © 2007 The Zoological Society of London