1,727 research outputs found
Organic dye for dye-sensitized solar cells
Organic dye for a dye-sensitized solar cell (DSSC) comprising at least one electron-acceptor unit and at least one π-conjugated unit. Said organic dye is particularly useful in a dye-sensitized photoelectric transformation element which, in its turn, can be used in a dye-sensitized solar cell (DSSC)
Organic dye for dye-sensitized solar cell
Organic dye for a dye-sensitized solar cell (DSSC) comprising at least one electron-acceptor unit and at least one π-conjugated unit. Said organic dye is particularly useful in a dye-sensitized photoelectric transformation element which, in its turn, can be used in a dye-sensitized solar cell (DSSC)
Halo-complexes of Titanium(III): the Thermochromic Behaviour of [NBu4][TiCl4(thf)2]
TiCl3(thf)3 reacts with ACl (A = NBu4, PPN; PPN = Ph3PNPPh3) in dichloromethane solution, affording the compounds A[TiCl4(thf)2] (A = NBu4, 1; A = PPN, 2). Compound 1, dissolved in CH2Cl2, exhibits thermochromic behaviour which has been the subject of variable-temperature UV–Vis investigations
Parameters for a Super-Flavor-Factory
A Super Flavor Factory, an asymmetric energy e+e- collider with a luminosity
of order 10^36 cm-2s-1, can provide a sensitive probe of new physics in the
flavor sector of the Standard Model. The success of the PEP-II and KEKB
asymmetric colliders in producing unprecedented luminosity above 10^34 cm-2s-1
has taught us about the accelerator physics of asymmetric e+e- colliders in a
new parameter regime. Furthermore, the success of the SLAC Linear Collider and
the subsequent work on the International Linear Collider allow a new
Super-Flavor collider to also incorporate linear collider techniques. This note
describes the parameters of an asymmetric Flavor-Factory collider at a
luminosity of order 10^36 cm-2s-1 at the Upsilon(4S) resonance and about 10^35
cm-2s-1 at the Tau production threshold. Such a collider would produce an
integrated luminosity of about 10,000 fb-1 (10 ab-1) in a running year (10^7
sec) at the Upsilon(4S) resonance.Comment: Flavor Physics & CP Violation Conference, Vancouver, 200
Unitary and analytic model of nucleon EM structure, the puzzle with JLab proton polarization data and new insight into proton charge distribution
The Unitary and analytic model of nucleon electromagnetic structure,
describing all existing nucleon form factor data, is briefly reviewed. Then in
the framework of this model the problem of inconsistency of older proton
electric form factor data in space-like region (obtained from process by the Rosenbluth technique) with recent Jefferson Lab data on
the ratio (measured in precise polarization
experiment) is suggested
to be solved in favour of the latter data which, however, unlike older data
cause an existence of the form factor zero, i.e. a difraction minimum in
around GeV. The new behaviour of
with the zero gives modified proton charge distribution with enlarged value of
the mean square charge radius.Comment: 9 pages, 11 eps figures. Talk presented at the workshop on Lepton
Scattering and the Structure of Hadrons and Nuclei, Erice (Italy), September
200
Organic dye for dye-sensitized solar cells
Organic dye for a dye-sensitized solar cell (DSSC) comprising at least one electron-acceptor unit and at least one π-conjugated unit. Said organic dye is particularly useful in a dye-sensitized photoelectric transformation element which, in its turn, can be used in a dye-sensitized solar cell (DSSC)
Photovoltaic characterization of di-branched organic sensitizers for DSSCs.
In this work, the data on the effect of peripheral functionalization of a series of triphenylamine based di-branched dyes used as sensitizers in dye-sensitized solar cells are presented. The effect of different alkyl functionalities on the donor moiety upon the optical and photovoltaics parameters have been investigated in dye-sensitized solar cells (DSSCs) using a 10-μm TiO2 active layer. The absorption spectra, output efficiency, and incident photon to conversion efficiency of the DSSCs have been collected. The data can be exploited for properly designing efficient, stable, and industrially viable dyes for third generation solar devices
Reentrant Metallic Behavior of Graphite in the Quantum Limit
Magnetotransport measurements performed on several well-characterized highly
oriented pyrolitic graphite and single crystalline Kish graphite samples reveal
a reentrant metallic behavior in the basal-plane resistance at high magnetic
fields, when only the lowest Landau levels are occupied. The results suggest
that the quantum Hall effect and Landau-level-quantization-induced
superconducting correlations are relevant to understand the metallic-like
state(s) in graphite in the quantum limit.Comment: 4 pages, 5 figure
- …