241 research outputs found
Why does a metal-superconductor junction have a resistance?
This is a tutorial article based on a lecture delivered in June 1999 at the
NATO Advanced Study Institute in Ankara. The phenomenon of Andreev reflection
is introduced as the electronic analogue of optical phase-conjugation. In the
optical problem, a disordered medium backed by a phase-conjugating mirror can
become completely transparent. Yet, a disordered metal connected to a
superconductor has the same resistance as in the normal state. The resolution
of this paradox teaches us a fundamental difference between phase conjugation
of light and electrons.Comment: 12 pages, 5 postscript figures [v2: all figures inline
Positron kinetics in an idealized PET environment
The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the 'gas-phase' assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations
The Influence of Temperature on Coumarin 153 Fluorescence Kinetics
The influence of temperature varied in the range 183 K–323 K on the fluorescence quantum yield, fluorescence lifetime, absorption and emission transition moments and non-radiative deactivation rate was determined for the well known and largely used dye Coumarin 153, dissolved in 1-chloropropane. The Kennard-Stepanov relation connecting the absorption and emission spectra was used to check for the presence of more than one absorbing/emitting species and to investigate whether intramolecular vibrational redistribution completes in the C153 excited S1 state before the emission takes place. The emission spectrum corresponding to S1→S0 transition, was fitted at each temperature to the model function including the information on the dye vibrational modes coupling. In this way the displacement in equilibrium distance for the most active vibrational mode was determined for C153 in S1 and in S0. Using the temperature dependence of the fluorescence decay time and quantum yield, the non-radiative deactivation rate was determined. Its temperature dependence was compared to that calculated using the theoretical model with the most active vibrational mode displacement values taken from steady-state spectra analysis. The somewhat surprising dependence of the fluorescence decay time and quantum yield on temperature was related to non-trivial coupling between low-frequency vibrational modes of C153 in the excited and ground states
Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A
The diffuse Galactic -ray emission, mainly produced via interactions
between cosmic rays and the interstellar medium and/or radiation field, is a
very important probe of the distribution, propagation, and interaction of
cosmic rays in the Milky Way. In this work we report the measurements of
diffuse -rays from the Galactic plane between 10 TeV and 1 PeV
energies, with the square kilometer array of the Large High Altitude Air Shower
Observatory (LHAASO). Diffuse emissions from the inner
(, ) and outer
(, ) Galactic plane are detected with
and significance, respectively. The outer Galactic
plane diffuse emission is detected for the first time in the very- to
ultra-high-energy domain (~TeV). The energy spectrum in the inner Galaxy
regions can be described by a power-law function with an index of
, which is different from the curved spectrum as expected from
hadronic interactions between locally measured cosmic rays and the
line-of-sight integrated gas content. Furthermore, the measured flux is higher
by a factor of than the prediction. A similar spectrum with an index of
is found in the outer Galaxy region, and the absolute flux for
TeV is again higher than the prediction for hadronic
cosmic ray interactions. The latitude distributions of the diffuse emission are
consistent with the gas distribution, while the longitude distributions show
clear deviation from the gas distribution. The LHAASO measurements imply that
either additional emission sources exist or cosmic ray intensities have spatial
variations.Comment: 12 pages, 8 figures, 5 tables; accepted for publication in Physical
Review Letters; source mask file provided as ancillary fil
Construction and On-site Performance of the LHAASO WFCTA Camera
The focal plane camera is the core component of the Wide Field-of-view
Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air
Shower Observatory (LHAASO). Because of the capability of working under
moonlight without aging, silicon photomultipliers (SiPM) have been proven to be
not only an alternative but also an improvement to conventional photomultiplier
tubes (PMT) in this application. Eighteen SiPM-based cameras with square light
funnels have been built for WFCTA. The telescopes have collected more than 100
million cosmic ray events and preliminary results indicate that these cameras
are capable of working under moonlight. The characteristics of the light
funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate,
assembly techniques). In this paper, we present the design features,
manufacturing techniques and performances of these cameras. Finally, the test
facilities, the test methods and results of SiPMs in the cameras are reported
here.Comment: 45 pages, 21 figures, articl
Does or did the supernova remnant Cassiopeia A operate as a PeVatron?
For decades, supernova remnants (SNRs) have been considered the prime sources
of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to
PeV energies and thus dominate CR flux up to the knee is currently under
intensive theoretical and phenomenological debate. The direct test of the
ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy
(UHE; ~TeV) -rays. In this context, the historical
SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE
observations. This paper presents the observation of Cas A and its vicinity by
the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE
band, combined with the young age of Cas A, enabled us to derive stringent
model-independent limits on the energy budget of UHE protons and nuclei
accelerated by Cas A at any epoch after the explosion. The results challenge
the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in
the Milky Way.Comment: 11 pages, 3 figures, Accepted by the APJ
LHAASO-KM2A detector simulation using Geant4
KM2A is one of the main sub-arrays of LHAASO, working on gamma ray astronomy
and cosmic ray physics at energies above 10 TeV. Detector simulation is the
important foundation for estimating detector performance and data analysis. It
is a big challenge to simulate the KM2A detector in the framework of Geant4 due
to the need to track numerous photons from a large number of detector units
(>6000) with large altitude difference (30 m) and huge coverage (1.3 km^2). In
this paper, the design of the KM2A simulation code G4KM2A based on Geant4 is
introduced. The process of G4KM2A is optimized mainly in memory consumption to
avoid memory overffow. Some simpliffcations are used to signiffcantly speed up
the execution of G4KM2A. The running time is reduced by at least 30 times
compared to full detector simulation. The particle distributions and the
core/angle resolution comparison between simulation and experimental data of
the full KM2A array are also presented, which show good agreement
Jet modification via π 0 -hadron correlations in Au+Au collisions at √sNN = 200 GeV
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the
quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with
transverse momenta in the range 4–12 GeV/c and 0.5–7 GeV/c, respectively, have been measured
by the PHENIX experiment in 2014 for Au+Au collisions at √sNN = 200 GeV. Suppression is
observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates
jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for
low-momentum particles. The ratio and differences between the yield in Au+Au collisions and p+p
collisions, IAA and ∆AA, as a function of the trigger-hadron azimuthal separation, ∆ϕ, are measured
for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-pT associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as
well as medium-response effects
Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV
The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b ≈ 10.5◦. This provides a rare opportunity to spatially resolve the compo- nent of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data anal- ysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21σ and 17σ at 8-100 TeV and >100 TeV, respectively. The corresponding extensions are determined to be 0.23◦±0.03◦ and 0.17◦±0.03◦. The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE = (42.4 ± 4.1)( E / (20 TeV) )−2.31±0.11 exp(− E / (110±25 TeV) ) TeV−1 cm−2 s−1 in the energy range from 8 to 300 TeV, implying a steady-state parent electron spectrum dNe/dEe ∝ ( Ee / (100 TeV) )−3.13±0.16 exp[( (−Ee) / (373±70 TeV) )2] at energies above ≈ 50 TeV. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to ≈ 4.5 μG. To satisfy the multi-wavelength spectrum and the γ-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption
- …
