9 research outputs found

    High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes

    Get PDF
    Perovskite-based optoelectronic devices have gained significant attention due to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes (LEDs), non-radiative charge carrier recombination has limited electroluminescence (EL) efficiency. Here we demonstrate perovskite-polymer bulk heterostructure LEDs exhibiting record-high external quantum efficiencies (EQEs) exceeding 20%, and an EL half-life of 46 hours under continuous operation. This performance is achieved with an emissive layer comprising quasi-2D and 3D perovskites and an insulating polymer. Transient optical spectroscopy reveals that photogenerated excitations at the quasi-2D perovskite component migrate to lower-energy sites within 1 ps. The dominant component of the photoluminescence (PL) is primarily bimolecular and is characteristic of the 3D regions. From PL quantum efficiency and transient kinetics of the emissive layer with/without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated. Light outcoupling from planar LEDs, as used in OLED displays, generally limits EQE to 20-30%, and we model our reported EL efficiency of over 20% in the forward direction to indicate the internal quantum efficiency (IQE) to be close to 100%. Together with the low drive voltages needed to achieve useful photon fluxes (2-3 V for 0.1-1 mA/cm2), these results establish that perovskite-based LEDs have significant potential for light-emission applications

    Highly efficient inverted polymer light-emitting diodes using surface modifications of ​ZnO layer

    Get PDF
    Organic light-emitting diodes have been recently focused for flexible display and solid-state lighting applications and so much effort has been devoted to achieve highly efficient organic light-emitting diodes. Here, we improve the efficiency of inverted polymer light-emitting diodes by introducing a spontaneously formed ripple-shaped nanostructure of ​ZnO and applying an amine-based polar solvent treatment to the nanostructure of ​ZnO. The nanostructure of the ​ZnO layer improves the extraction of the waveguide modes inside the device structure, and a ​2-ME+​EA interlayer enhances the electron injection and hole blocking in addition to reducing exciton quenching between the polar-solvent-treated ​ZnO and the emissive layer. Therefore, our optimized inverted polymer light-emitting diodes have a luminous efficiency of 61.6 cd A−1 and an external quantum efficiency of 17.8%, which are the highest efficiency values among polymer-based fluorescent light-emitting diodes that contain a single emissive layer.close
    corecore