14 research outputs found

    Therapeutic applications of the 'NPGP' family of viral 2As

    Get PDF
    The authors gratefully acknowledge the long‐term support of the Wellcome Trust and the UK Biotechnology and Biological Sciences Research Council (BBSRC).Oligopeptide “2A” and “2A‐like” sequences (“2As”; 18‐25aa) are found in a range of RNA virus genomes controlling protein biogenesis through “recoding” of the host‐cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote‐specific, self‐“cleaving” event, termed “ribosome skipping” with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady‐state levels depend upon other factors—notably protein stability. By contrast, the use of internal ribosome entry site elements for co‐expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy‐chain and light‐chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these “artificial polyprotein” systems can be independently targeted to different sub‐cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF—a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β‐carotene (four gene sequences) were concatenated into a single cistron such that all components were co‐expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co‐expression technology in basic research, biotechnology, and clinical applications.PostprintPeer reviewe

    History of thyroid disease and survival of ovarian cancer patients: results from the Ovarian Cancer Association Consortium, a brief report

    Get PDF
    BACKGROUND: Findings from in vitro studies suggest that increased exposure to thyroid hormones can influence progression of ovarian tumours. However, epidemiologic evidence on this topic is limited. METHODS: We pooled data from 11 studies from the Ovarian Cancer Association Consortium. Using multivariate Cox proportional hazards models, we estimated associations between hyper- and hypothyroidism and medications prescribed for these conditions with 5-year all-cause survival among women diagnosed with invasive ovarian cancer. RESULTS: Overall, there was a nonsignificant association with history of hyperthyroidism (n=160 cases) and mortality (HR=1.22; 95% CI=0.97-1.53). Furthermore, diagnosis of hyperthyroidism within the 5 years before ovarian cancer diagnosis was associated with an increased risk of death (HR=1.94; 95% CI=1.19-3.18). A more modest association was observed with history of hypothyroidism (n=624 cases) and mortality (HR=1.16; 95% CI=1.03-1.31). Neither duration of hypothyroidism nor use of thyroid medications was associated with survival. CONCLUSIONS: In this large study of women with ovarian cancer, we found that recent history of hyperthyroidism and overall history of hypothyroidism were associated with worse 5-year survival

    History of thyroid disease and survival of ovarian cancer patients: results from the Ovarian Cancer Association Consortium, a brief report.

    Get PDF
    BACKGROUND: Findings from in vitro studies suggest that increased exposure to thyroid hormones can influence progression of ovarian tumours. However, epidemiologic evidence on this topic is limited. METHODS: We pooled data from 11 studies from the Ovarian Cancer Association Consortium. Using multivariate Cox proportional hazards models, we estimated associations between hyper- and hypothyroidism and medications prescribed for these conditions with 5-year all-cause survival among women diagnosed with invasive ovarian cancer. RESULTS: Overall, there was a nonsignificant association with history of hyperthyroidism (n=160 cases) and mortality (HR=1.22; 95% CI=0.97-1.53). Furthermore, diagnosis of hyperthyroidism within the 5 years before ovarian cancer diagnosis was associated with an increased risk of death (HR=1.94; 95% CI=1.19-3.18). A more modest association was observed with history of hypothyroidism (n=624 cases) and mortality (HR=1.16; 95% CI=1.03-1.31). Neither duration of hypothyroidism nor use of thyroid medications was associated with survival. CONCLUSIONS: In this large study of women with ovarian cancer, we found that recent history of hyperthyroidism and overall history of hypothyroidism were associated with worse 5-year survival

    EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes

    Get PDF
    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1-14C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1-14C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.submittedVersio

    A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence

    No full text
    Transition-metal complexes are used as photosensitizers1, in light-emitting diodes, for biosensing and in photocatalysis2. A key feature in these applications is excitation from the ground state to a charge-transfer state3,4; the long charge-transfer-state lifetimes typical for complexes of ruthenium5 and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron6 and copper7 being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs6,8,9,10, it remains a formidable scientific challenge11 to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered12 photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers13,14,15. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes4,16,17. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers
    corecore