23 research outputs found

    Cancer treatment-related neuropathic pain:proof of concept study with menthol—a TRPM8 agonist

    Get PDF
    PURPOSE: Effective treatment of neuropathic pain without unacceptable side effects is challenging. Cancer sufferers increasingly live with long-term treatment-related neuropathic pain, resulting from chemotherapy-induced peripheral neuropathy (CIPN) or surgical scars. This proof-of-concept study aimed to determine whether preclinical evidence for TRPM8 ion channels in sensory neurons as a novel analgesic target could be translated to clinical benefit in patients with neuropathic pain, using the TRPM8 activator menthol. PATIENTS AND METHODS: Patients with problematic treatment-related neuropathic pain underwent a baseline assessment using validated questionnaires, psychophysical testing, and objective functional measures. The painful area was treated with topical 1 % menthol cream twice daily. Assessments were repeated at 4–6 weeks. The primary outcome was the change in Brief Pain Inventory total scores at 4–6 weeks. Secondary outcomes included changes in function, mood and skin sensation. RESULTS: Fifty-one patients (female/male, 32/19) were recruited with a median age of 61 (ranging from 20 to 89). The commonest aetiology was CIPN (35/51), followed by scar pain (10/51). Thirty-eight were evaluable on the primary outcome. Eighty-two per cent (31/38) had an improvement in total Brief Pain Inventory scores (median, 47 (interquartile range, 30 to 64) to 34 (6 to 59), P < 0.001). Improvements in mood (P = 0.0004), catastrophising (P = 0.001), walking ability (P = 0.008) and sensation (P < 0.01) were also observed. CONCLUSION: This proof-of-concept study indicates that topical menthol has potential as a novel analgesic therapy for cancer treatment-related neuropathic pain. Improvements in patient-rated measures are supported by changes in objective measures of physical function and sensation. Further systematic evaluation of efficacy is required

    The Vein Patterning 1 (VEP1) Gene Family Laterally Spread through an Ecological Network

    Get PDF
    Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic α-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments

    Early phase of plasticity-related gene regulation and SRF dependent transcription in the hippocampus

    Get PDF
    Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze the early phase of the transcriptional response induced by a 20 \ub5M gabazine treatment (GabT), a GABA-Ar antagonist, by using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average sampling rate of 10 minutes and covering the time interval [10 3690] minutes. The cluster analysis of the time-course disclosed the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from previous works, to be significantly related with SRF-dependent regulation (p-value<0.05). The chromatin immunoprecipitation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF

    Auge

    No full text

    A Sediment Budget of the Upper Kaunertal

    No full text
    This chapter presents the sediment budget of the Upper Kaunertal (Ötztal Alps, Austria) for the years 2012–2014 as obtained in the framework of the PROSA (high-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) research project. An important methodological basis of this high-mountain sediment budget is the usage of study area-wide LiDAR data (TLS and ALS) of comparatively high temporal and spatial resolution to measure rates of erosion and deposition, and to regionalize/upscale rates at the local scale. After several billion measurement points and data from fieldwork, mapping, and modeling efforts had been processed and evaluated, it was possible to identify and quantify sediment transfer by all relevant processes at the scale of the 62 km2 study area. These processes include rockfall of three different magnitude classes, debris flows, avalanches, creep on talus, fluvial processes (hillslopes and main fluvial system), rock glaciers, and glaciers. After a short presentation of the process-specific methods to obtain catchment-wide rates, we discuss process-specific results and the budget. The sediment budget does not only show the relative importance of the mentioned processes and spatial subunits (proglacial vs. non-proglacial) in the Upper Kaunertal. It also gives insight into the importance of high-magnitude events and the configuration of the sediment transport system
    corecore