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Abstract

Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze
the early phase of the transcriptional response induced by a 20 mM gabazine treatment (GabT), a GABA-Ar antagonist, by
using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The
transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the
regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using
RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average
sampling rate of 10 minutes and covering the time interval [10:90] minutes. The cluster analysis of the time-course disclosed
the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from
previous works, to be significantly related with SRF-dependent regulation (p-value,0.05). The chromatin immunoprecip-
itation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical
pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the
presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant
SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box.
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Introduction

Cognitive processes such as learning and memory originate

from plastic modifications in the central nervous system CNS:

these plastic changes affect the structure and the functions of

neurons and of synapses and lead to experience-dependent

alterations in neural network wiring and behavior. The introduc-

tion of high-throughput assays and large-scale approaches in

neuroplasticity has contributed to encompass the broad extent of

this phenomenon, which involves the cooperative interplay of

numerous cellular processes that not only regulate the synaptic

transmission itself but also cell survival [1], neuronal growth [2]

and neurogenesis [3].

The modulation of gene transcription has proven to be playing

a key role in neuroplasticity: increased synaptic activity leads to

calcium influx into the post-synaptic spines, dendrites and soma,

which activates calcium dependent signaling pathways that in turn

regulate transcription factors within the nucleus [4][5][6]. In our

previous work with dissociated rat neuronal cultures [5] we

combined transcriptome profiling with electrophysiological re-

cordings in order to describe the role of different calcium sources

in the regulation of gene expression changes. The variations of

calcium dynamics driven by synaptic activity, as well as the

resulting activation/deactivation changes in the relative signaling

pathways, have shown to be tightly regulated both in time [7][8]

and space [9][10][11]. For instance, the modulation of the

neurotrophin Bdnf (brain derived neurotropic factor) gene

expression, following synaptic activity, requires a series of

phosphorylation/dephosphorylation steps of the transcription

factors CREB, MEF2 and MEcp2 in order to keep the Bdnf

expression bound to the desired dynamics [12]. The expression

level of many other plasticity-related genes is governed by

sophisticated controls of dynamics [13]: this result is often

achieved thanks to the interplay of a large number of transcription

factors and is often related to signaling changes which are

triggered within a time-scale of minutes [14][15][16].

Alterations in the dynamical pattern of activity-induced

programs may result in pathological states: for example, the

removal of the phosphatase MKP-1/DUSP1 negative feedback

loop on the kinase JNK alters the proper JNK-activation dynamics

and leads to the inability of forming new axonal branching during

mice cortex development [17]. Despite the importance of the

dynamical aspects of transcriptional changes, the information

currently available is limited to time-courses with low temporal

resolution, i.e. a few time points, and/or concerning a reduced

number of genes, such as [15][18][19]. The purpose of the present

study is to trace with high temporal resolution the early

transcriptional dynamics associated with plasticity, using the

gabazine treatment of rat organotypic cultures as hippocampal

plasticity model: organotypic culture preparation has the advan-

tage of retaining the general morphological and functional

properties of the intact hippocampus [20] [21]. Besides, if

compared to acute slices, organotypic cultures are able, within

one week, to remodel the synaptic connections altered by the

slicing procedure, which is not possible for acute slices [22]. In this
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work we will begin with a preliminary microarray-based assess-

ment of the transcriptional response of hippocampal cultures to a

20 mM gabazine (also known as SR95531, a GABA-A receptor

antagonist) treatment: the aim of this step is to obtain a general

outline of the cellular activities involved in the response to GABA-A

blocking. GABA-A channels are ionotropic channels that, upon

binding of Gaba molecules, exert an inhibitory effect on neuronal

excitability by specifically increasing the chloride conductance.

Drugs such as gabazine, bicuculline or picrotoxin (PTX) act as

GABA-A antagonists and therefore induce an increase of the

overall neuronal excitability: these drugs have been extensively

used as models for various types of plasticity (epilepsy, long term

potentiation, homeostatic plasticity etc.), according to the tissue,

dosage, duration of the treatment and possible concomitant

stimuli. The 20 mM dosage was adopted in accordance to the

evidences provided in [5], where we have previously studied the

electrophysiological effects of a 20 mM GabT in dissociated

hippocampal cultures.

Following the microarray assay, we will then quantify and

analyze a high temporal resolution time course comprising a large

set (33) of plasticity-related genes and we will relate the main

features of the dynamical profiles with the putative biological

functions of the relative genes/proteins. Following that, we will

link one cluster of genes to a SRF-dependent regulation, by means

of statistical and in silico analysis, and we will finally develop a chip

(chromatin immunoprecipitation) assay in order to gain novel informa-

tion about the role of SRF in the early phase of activity-dependent

regulation of gene expression.

Results

Microarray analysis
A transcriptome profiling of a GABA-A receptor antagonist

treatment is still lacking in the case of organotypic hippocampal

cultures. Therefore, we decided to start the analysis with a

preliminary, microarray-based, assessment of the response of rat

organotypic hippocampal cultures to a 20 mM gabazine treatment

(GabT): the purpose of this step was to obtain a complete profile of

the tissue reaction to a prolonged GABA-A receptor blockade,

which is strictly associated with a sudden and powerful increase in

the tissue synaptic activity and in the intensity of calcium dynamics

[6][23][24].

Three independent biological replicas were collected and

analyzed on the Affymetrix rat 230.2 chip; for each replicas the

expression of the gabazine-treated sample was then compared to

the control-untreated sample and the probes/genes of the chip

were arranged in ascending up-regulation/p-value score. The

results of a GO enrichment analysis, performed considering the

genes with an up-regulation value higher than 2, approximately

corresponding to a p-value#0.005, are presented in table 1. The

complete list of probes/genes data used in the present and in the

subsequent analysis is provided in the table A in file S1.

The sudden increase of synaptic activity induces the up-

regulation of a variety of genes involved in several cellular

processes and localized into different cellular compartments. A

significant component (p-value#1.90?1024, modified Fisher Exact

P-value) of the up-regulated genes, including for instance the

effectors Arc and Rgs2, is involved in the regulation of synaptic

transmission itself, by acting directly in axon terminals and

dendritic spines. Another group of genes (p-value#1.90?1025)

consists in a large pool of transcription factors, like for example

Cfos and Klf4, that is responsible for driving the second wave of

cellular responses, possibly related to longer lasting changes in

neuron metabolism, morphology and functions [7]. Interestingly,

the same group of transcription factors results to be highly

enriched in the positive regulation of transcription term (p-

value#3.70?1027): this indicates that, despite the presence of

transcriptional repressors, such as Icer and Nfil3, the longer lasting

changes are mainly based on the activation of not-expressed genes

rather than on the suppression of already expresses ones. A

consistent (p-value#2.20?1023) component of genes is involved in

the regulation of cell survival: interestingly, according to the GO,

they appear to influence the survival in both a positive and a

negative manner. However, it appears that GabT treatment

induces a strong push (p-value#1.7?1022) towards growth,

neurogenesis and neuritogenesis. Finally, it is worth mentioning

that the MAPK signaling pathway as well as the small-gtpase family

are confirmed as the most important mediators of the aforemen-

tioned processes (p-value#2.9?1022).

To verify the up-regulation values observed in the microarray

assay, we selected a group of 33 genes among the highest up-

regulated ones and we measured their expression level in gabazine

vs. untreated samples by RT-PCR. These 33 transcripts corre-

spond to the top-fifty up-regulated probes deprived of those

pointing to ‘‘predicted’’ transcripts and deprived of those charac-

terize by low values of mRNA abundance (i.e. intensity of

microarray signal). The latter ones were excluded mainly because

their low amounts of mRNA were causing the RT-PCR data to be

excessively noisy. The final list of transcripts whose up-regulation

was verified by RT-PCR is presented in Table 1, while the RT-

PCR data is presented in table C in file S1.

As a next step, we wanted to validate the previous Gene

Ontology analysis. The functions associated to the genes in the

Gene Ontology database (www.geneontology.org) are often

derived from bioinformatics predictions, such as inference from

sequence ortology or from common expression patterns: these kind

of predictions, although likely reliable, have not been verified

experimentally. In order to assess the consistency of our GO

analysis, we proceeded by creating a manually compiled

‘‘vocabulary’’ of gene functions for each of the genes belonging

to the set confirmed by RT-PCT; this vocabulary was based on an

extensive search in the literature and built by considering only the

most reliable results. More precisely, we preferentially considered

Table 1. Table presenting the principal families of GO terms
found to be enriched in the microarray-based analysis of
gabazine treatment.

GO term num. genes p-value

regulation of synaptic transmission 7 1.90?1024

nucleus 14 1.20?1022

regulation of transcription 19 8.60?1024

positive regulation of transcription 15 3.70?1027

learning or memory 9 3.40?1027

feeding behavior 5 6.40?1027

regulation of calcium ion transport 5 3.60?1024

transmembrane protein 6 1.20?1021

regulation of apoptosis 11 2.20?1023

negative regulation of apoptosis 6 2.80?1022

positive regulation of cell death 6 2.80?1022

The first column specifies the GO term, the second column contains the
number of genes associated with the GO term and the last column presents the
p-value score of the enrichment.
doi:10.1371/journal.pone.0068078.t001
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only functional evidences derived from hippocampal tissues such

as organotypic slices, acute slices, dissociated cultures or in vivo

conditions. When hippocampus-based studies were lacking, we

collected proofs from other types of nervous tissues, such as

cortical neurons, dorsal root ganglion cells or glioma tissue. The

complete list of gene/protein roles extracted from the literature is

available in file S2, while a brief summary of them is available in

Table 2.

Since it is well established that certain genes/proteins listed in

Table 2 can exert different roles according to the cellular context

[1][110][162] (see file S2 for more details), we also tried to avoid

considering functional results obtained from excessive pathological

stimuli, which could alter the physiological native role of a gene/

protein. For instance in [60] the neurons were treated with

Camptothecin to cause DNA damage and the Cbp/p300-interacting

transactivator 2, also known as Cited2, was related to the activation of

apoptosis: we found these circumstances too dissimilar from the

gabazine-treatment of the present work and therefore we decided

not to consider this as a functional evidence. The Fig. 1 represents

the distribution of the literature-extrapolated functions with

respect to the cellular compartments. The similarity between the

functions/processes highlighted by GO and those derived from

selected literature appears to be good, nonetheless we can make at

least two considerations:

1) In regard to the equilibrium of pro and anti-survival genes

emerged from the GO, we must point out that the resulting

situation from the literature analysis is quite different: instead

of an equilibrium, we can actually notice a substantial shift

towards pro-survival genes in response to gabazine. This

Table 2. Table containing the list of 33 genes whose up-regulation was confirmed by RT-PCR.

GENE NAME ROLE FUNCTION(S) REFERENCES

Arc EF NEUROGENESIS/SURVIVAL/anti-GROWTH/Reg.Syn.trasmission [25][26][27][28][29][30][31][32][33][34]

Atf3 TF SURVIVAL [1][35][36]

Bdnf EF NEUROGENESIS/SURVIVAL/GROWTH/Pos.Reg.Syn.transmission [37][38][39][40][41][42][43][44][45][46]

Btg2 TF NEUROGENESIS/SURVIVAL [1][3] [47][48][49]

Cfos TF GROWTH/Pos.Reg.Syn.transmission [18][50][51][52][53][54][55][56][57]

Cited2 TF [58][59][60]

Crem/Icer TF anti-SURVIVAL/Neg.Reg.Syn.transmission [61][62][63][64][65][66][67]

Cyr61 EF GROWTH [68][69][70]

Dusp1 EF erk inactivation/anti-GROWTH [17][71][72]

Dusp5 EF erk inactivation [73][74]

Dusp6 EF erk inactivation [75][76]

Egr1 TF Pos.Reg.Syn.transmission [77][78][79][80][81][82]

Egr2 TF [83][84]

Egr3 TF Pos.Reg.Syn.transmission [82][85][86][87]

Egr4 TF [88][89][90]

Gadd45b EF NEUROGENESIS/SURVIVAL/GROWTH [1][2]

Homer1a EF Reg.Syn.trasmission/GROWTH [91][92][93][94][95]

Irs2 EF GROWTH/Reg.Syn.trasmission [96][97][98]

Klf4 TF anti-GROWTH [99][100][101][102][103]

Mapk10 EF SURVIVAL/GROWTH/Reg. Syn. Transmission [104][105][106][107][108][109][110][111][112][113][114]

Nfil3 TF SURVIVAL [115][116][117]

Nptx2 EF Neg.Reg.Syn.Transmission [118][119][120][121]

Npy1r EF NEUROGENESIS/Pos.Reg.Syn.trasmission [122][123][124][125][126]

Nr4a1 TF SURVIVAL/anti-GROWTH [1][127][128]

Nr4a2 TF SURVIVAL/Reg.Syn.transmission [81][128][129][130][131][132]

Nr4a3 TF SURVIVAL/GROWTH [19][128][133][134]

NTF3 EF GROWTH/SURVIVAL [135][136][137][138][139][140][141][142]

Pcdh8 EF Neg.Reg.Syn.Transmission [143][144]

Plk2 EF Neg.Reg.Syn.Transmission [24][145]

Ptgs2 EF SURVIVAL/Pos.Reg.Syn.Transmission [146][147][148][149][150][151]

Rasl11b EF [152]

Rgs2 EF Neg.Reg.Syn.Transmission [153][154][155][156]

Srf TF Reg.Syn. Transmission [12] [69][72][157][158][159][160][161]

The first column contains the official gene symbol, the second column assigns the role of EF, effector, or TF, transcription factor, while the last column summarizes the
validated gene functions, which always refer to tissues or experimental conditions coherent with the present work. For the complete details please refer to the survey
presented in the supplementary file S2.
doi:10.1371/journal.pone.0068078.t002
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difference arises from a different attribution of functions to the

genes Nr4a1, Ptgs2, Arc, Atf3, Gadd45b and Nfil3. More

precisely, all of these genes have proven, in the past years, to

consistently promote neuron survival by protecting them from

various oxidative, genotoxic and exitotoxic stresses; see file S2

for a complete review. (In short, we can confirm that a strong

neuroprotective shield is induced by the synaptic activity

associated with GABA-Ar blockage.)

2) Fig. 1 depicts more clearly how the effector early genes

induced by the GABA-A blockade are mainly involved in the

regulation of synaptic transmission and are localized in the

synaptic terminals. Vice versa, those genes with growth,

survival and neurogenesis promoting effects are mainly acting

in the nucleus as transcription factors, thus their effects will

realize only in conjunction with the subsequent wave of up-

regulated genes.

Gene expression time course
To gain better insights into the mechanisms of the transcrip-

tional response to GabT we decided to investigate whether the up-

regulation value found after 1.5 hours (for the genes induced by

gabazine) is reached following different temporal dynamics or, on

the contrary, all genes share the same induction pattern.

Previous studies [50][163][164] have already suggested that,

following episodes of synaptic activity or during synaptic plasticity

processes, the induced immediate-early-genes (IEGs) are charac-

terized by different up-regulation dynamics: nonetheless, the time-

course data collected so far in the literature is mainly obtained by

microarray analysis, such as [7][165], and not by a reliable and

accurate RT-PCR analysis: more precisely, the information

currently available is limited to time-courses with low temporal

resolution, i.e. a few time points, and/or concerning a reduced

number of genes, such as [15][18][19]. In all of these cases the

time-course measurement was not the main aim of the paper, but

it was rather an instrument to verify the effects of certain blockers/

conditions, therefore a particularly high temporal resolution was

simply not needed.

The rat organotypic hippocampal cultures were subjected to a

20 mM gabazine treatment and the total Rna was gathered at 12

different time points spanning from 10 minutes to 95 minutes,

with an average inter-sample time (sampling period) of 10 min-

utes. The procedure was eventually repeated three times, each

time with a different twin rats couple, in order to obtain three

independent replicas of the time-course, and RT-PCR was then

performed for every gene in order to measure the up-regulation

values at the different time points. The genes included in the time

course analysis are those presented in Table 2. The time points of

each replicas were then interpolated with a smoothing spline in

order to emphasize the major trend underlying the up-regulation

process; afterwards, the three interpolations derived from the

replicas were combined into an average one, which was considered

as the reference trend in all of the subsequent analysis. As an

example, the resulting time course for the Bdnf gene (exon IV ) is

shown in Fig. 2, together with the original and interpolated results

for each replicas.

The first step of analysis that we carried out was a clustering of

the temporal data, aimed to unveil the existence of distinct

temporal patterns. Given that the measured time series are highly

non stationary, we decided to discard correlation-based methods

in favor of a k-means clustering algorithm based on Euclidean-

distance; after a preliminary normalization, which reduced all the

expression values of each gene to the interval [0:1], the Euclidean-

distance method proved to be able to correctly group together

genes sharing a similar temporal pattern, regardless the absolute

values of up-regulation. This methodology is the same applied in

[164].

Figure 1. Cellular localization of the functions attributable to the genes up-regulated by GABAr blockage. Gene functions, extracted
from findings reported in the literature, are categorized in four main groups, indicated by the terms: Syn.Tra, regulation of synaptic transmission,
growth, regulation of growth, neurogen., regulation of hippocampal neurogenesis, survival, regulation of survival. Each gene is counted as PRO when
it positively regulates these processes, while it is counted as ANTI when it negatively affects these processes. The cellular compartment of action for
each protein(gene) is chosen according to the indications reported in the literature. For example, it has been shown that the pentraxin Nptx2
(neuronal activity–regulated pentraxin) is localized in the excitatory synapses, where it exerts a homeostatic effect by recruiting AMPAr, AMPA
receptors, at excitatory projections onto gabaergic interneurons [118–121].
doi:10.1371/journal.pone.0068078.g001
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Figure 2. Bdnf time course: Graphs representing the three independent replicas of the Bdnf mRna time course. Time (minutes) on the
x-axis, ratio Gabazine/Control on the y-axis. The error-bar plot refers directly to the RT-PCR data. In each of the sub-pictures, it is presented the trend
resulting from the single biological replica of the RT-PCR time-course, which is superimposed to the averaged one, calculated as the mean of the
three replicates. Thanks to this representation, it is possible to directly compare the single measures (biological replicates) to the averaged one, which
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The main drawback of the k-means algorithm is the necessity to

manually set k, i.e. the number of desired clusters [166]. The

ability of the algorithm to distinguish among potential different

temporal dynamics increases as k increases, but, on the contrary,

the Z-score of the grouping outcome becomes less significant at

higher k values, which means that a random grouping would have

produced similar results, as illustrated in Fig. 3A.

To further test the consistency of the clustering procedure, we

designed four new control primers for the genes Egr1, Cfos, Rgs2

and Nurr1: these alternative primers point to different exons and

different exon-exon junctions with respect to the original ones.

With k = 2 the control primers were correctly grouped together

with their counterparts, as highlighted in figure 3. Most

importantly, even at higher fragmentation levels, with k = 4,

k = 6 and k = 8, the control primers remain associated to the

proper original ones: the probability that this correct grouping

might be due to chance is p = 6.33?1027 when k = 8.

We decided to use the approach described in [167] to determine

the optimal value for k in a unsupervised manner; the method is

based on the minimization of a function H(N), where N is the

number of clusters. Intuitively, the minimum of H(N) coincides

with the number of clusters where the addition of a further one

does not reduce significantly the average intra-cluster distance.

More details about this approach are presented in the Materials

and Methods section. The final result, presented in Fig. 3B,

indicates that k = 3 is the optimal value for the cluster number. In

Fig. 3C the outcome of the clusterization process with k = 3 is

represented in a two-dimensional plane.

Cluster 1, which comprises genes such as Arc, cFos and Klf4, is

characterized by a fast rise in the expression values, which peak at

about 50 minutes and subsequently remains steady till the end of

the measurement. The Arc gene was reported in several works to

be rapidly induced by episodes of synaptic activity, with a peak

within the first 60 minutes. Thus, for the Arc gene, our result is

coherent with [168], [169] and [170]; furthermore, it extends the

results to the other 12 IEGs characterized with the same dynamic

of Arc, thus suggesting the existence of a common regulation

system responsible for the induction of these faster-rising IEGs.

Cluster 2, which comprises genes such as Bdnf, Irs2 and Homer1a, is

characterized instead by a slower but constant increase, almost

linear up to 90 minutes. The differential dynamics characterizing

the Bdnf gene (cluster 2) with respect to the Cfos and Egr1 genes

(cluster 1) are coherent with a previous study [15] of Schaffer-

collateral HFS-induced LTP: again, here we extend the results to

other 25 IEGs which result to be similar to Cfos/Egr1 or to Bdnf

dynamics. Besides, the longer lasting duration of Cited2 (cluster 2)

mRna up-regulation with respect to the faster and shorter up-

regulation timings of Cfos (cluster 1) and NOR-1 (cluster 3) also

recalls the results obtained in [19] with an ECS stimulation of the

Dentate gyrus. The last cluster, which is smaller than the previous

ones and comprises genes such as NOR-1 and Btg2, presents a

marked peak which is concurrent to cluster 1 peak, but that is

successively followed by a pronounced decrease of the expression

value.

Relationship between clustering and function
Since previous studies have already supported the notion that

temporally clustered genes are likely involved in the same

biological functions [165][171], we next wanted to determine

whether it was possible to relate the different temporal profiles

previously extracted with particular inherent functions. Therefore,

for each temporal cluster of gene expression we performed an

enrichment analysis of functional evidence collected in the

manually compiled vocabulary, introduced in the ‘‘microarray

analysis’’ section.

The recent developments in the study of hippocampal plasticity

have consolidated the idea that episodes of intense physiological

synaptic activity strongly promote neurogenesis [3][34][37],

growth [2][97][136] and survival [1][36][150]. Our data confirm

the up-regulation of numerous genes endowed with these

properties already in the early phase (10–90 minutes) of

transcriptional regulation, see Fig. 4, indicating that a strong

neuroprotective shield is quickly activated by synaptic activity in

organotypic cultures, together with an increase in the Dentate

Granule Cells neurogenesis and an increase in the growth rate of

neurons and synaptic connections. However, also genes with

negative effects on growth (namely Icer, Klf4, Nr4a1 and Mkp-1) are

induced in association with the mentioned majority of positive

regulators, see Fig. 4. Interestingly, these four genes were all

grouped in the cluster 1 temporal pattern, thus making the cluster

1 significantly enriched with anti-growth properties (p-val-

ue#0.017, Fisher’s exact test). Vice versa, the cluster 2 comprises

only genes providing a positive effect on growth.

In the past decade the mechanisms involved in the homeostatic

regulation of synaptic strength have emerged as a fundamental

complement to Hebbian plasticity [172][173][174]. In the present

work we report that in rat organotypic cultures, following chronic

blockade of GABA-Ar, many genes involved in homeostatic-scaling

(weakening) processes, namely Narp/Nptx2, Arc, rgs2, arcadlin, plk2,

Homer1a, Icer, Dusp1, Dusp3, Dusp6, of which the single contributes

to plasticity have been partially unveiled

[24][33][67][91][121][144][154], are induced in concert already

in the first minutes of synaptic activity, thus suggesting the

existence of a sensitive and fast feedback mechanism that is

activated almost contextually to the perturbation. As illustrated in

Fig. 4, the homeostatic genes are equally spread among the three

clusters (p-value#0.43, Fisher’s exact test) indicating that there is

no particular relationship between the homeostatic function and

the up-regulation timings in the early phase (0–90 min.) of the

hippocampal response to perturbation. Interestingly, we noticed

that the homeostatic genes are tightly associated, in every cluster,

with genes exerting the opposite function, i.e. the potentiation of

synaptic transmission, as depicted in Fig. 4. Therefore, differently

from the survival and growth functions, for the regulation of

synaptic transmission we observe a functional equilibrium between

homeostatic-plasticity (weakening) genes and Hebbian-plasticity

(potentiation) genes.

Another crucial step of the homeostatic response is the re-

establishment of the basal level of active MAPKs [15][111]; this

process is carried out mainly by means of a negative feedback loop

involving the MAPKs themselves, together with the Dusp family of

phosphatases [72][76][134]. Here we report that Dusp1, Dusp5 and

Dusp6 are induced together by GabT, but with different temporal

patterns, since they are grouped into different clusters, see Fig. 4.

This result, which is coherent with previous studies [175] [176],

indicates that each of the DUSPs is dynamically tied to a different

group of genes: in this way, each cluster of the induced genes is

synchronized with a relative homeostatic feedback to the MAPKs.

The peculiar distribution of the Dusp family members, as well as

the in-cluster balance between homeostatic and Hebbian plasticity

eventually was the one used for all of the subsequent clustering analysis. The neurotrophin Bdnf, one of the master regulators of learning and
memory, will prove in the end to be up-regulated according to a pattern which is representative for almost 50% of the genes of the set under study.
doi:10.1371/journal.pone.0068078.g002
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Figure 3. Analysis of the clustering quality for the time course data. A) Outcome of the clustering algorithm, with progressive increase in the
number of clusters k: the picture represents, at each different k, the grouping of the 4 couples of alternative primers pointing to the same gene. For
k = 2,4,6,8 the alternative primers were correctly grouped together. The ‘‘replicas p-value’’, on the right, indicates the statistical consistency of the
alternative primer grouping, which reaches it maximum value when the algorithm is forced to split the 33 genes into 8 different clusters. On the left,
the Z-value of the global clustering, indicating the consistency of the temporal dynamics discrimination. B) Outcome of the algorithm aimed at
determining the optimal value for k. The number of clusters N is plotted against a function H(N): the minimum of H(N), i.e. N = 3, coincides with the
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genes, led us to notice that, concerning the regulation of synaptic

transmission, genes endowed with different, but at the same time

complementary/counterbalancing, functions seem to be bound

together into the same temporal dynamics in order to favor global

robustness of the system: indeed in this case the dysregulation of a

pathway caused by a pathological state would not create excessive

imbalances since the inner genes compensate each other. It is

interesting to point out that the present observation about global

optimal value for k. See Materials and Methods section for further details. C) Visual representation, with k = 3, of the distances between trajectories
and cluster centroids for all the 33 genes. For each cluster, the genes are disposed at increasing distances from the centroid, proportionally to their
normalized Euclidean distances. The distance of the farthest gene is indicated in the proximity of the outer circle. The orientation of the genes reflects
the proximity to the remaining two clusters. The distances between the cluster centroids are also indicated.
doi:10.1371/journal.pone.0068078.g003

Figure 4. Graphs of time-course data and their associated functions. The bold line, representing the average temporal pattern of each
cluster, is superimposed to the patterns of the single genes. The histograms depicts the amounts of positive (white bars) and negative (black bars)
regulators of the indicated processes for each cluster: n.g., regulation of hippocampal neurogenesis, growth, regulation of growth, surv., regulation of
survival, S.T., regulation of synaptic transmission.
doi:10.1371/journal.pone.0068078.g004

Study of the Early Phase of Hippocampal Plasticity

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e68078



stability recalls the conclusions of previous work [177], in which a

bioinformatic analysis of the CA1 hippocampal intracellular

pathways [178] revealed the existence of robustness, stability and

adaptability properties.

Relationship between clustering and regulation
In order to investigate the possible relationships between the

different temporal patterns of gene induction and the regulators of

gene transcription, we performed an accurate and extensive

literature research aimed to recreate the complete network of

pathways involved in the regulation of hippocampal gene

transcription: the complete survey is available in file S2. By a

cross comparison between pathways and transcription factors on

one side and time-course patterns on the other side, it emerged

that cluster 1, which was characterized by a fast increase in the

expression values followed by a flat/stationary state, is particularly

enriched in SRF, serum response factor, dependent regulations (p-

value#0.02, Fisher’s exact test). On the contrary, the cluster 2

does not present any SRF dependent regulation (p - value#0.05 ).

This data indicates that the SRF dependent regulation is

consistently biased towards the cluster 1, which is the cluster of

genes such as Arc, Cfos, Cyr61, Egr1 and Egr2, all of which have

shown to be regulated by Serum Response Factor in various

plasticity models [69][179][180][181][182][183].

To assess the validity of the above mentioned SRF regulatory

evidence for the genes Arc, Cfos, Cyr61, Egr1 and Egr2 in our model

of hippocampal plasticity, i.e. GabT of organotypic cultures, we

performed chip (chromatin immunoprecipitation) experiments to detect

SRF binding levels in their promoters during GabT. Besides, we

carried out an in silico analysis of the promoters of the remaining 8

genes belonging to the same cluster in order to detect other

possible active CArG boxes, the DNA sequence motif CC[A/T]6GG

that has a high affinity for SRF. As a result, CArG boxes conserved

among humans, rats and mice were found in the upstream region

of RGS2 and NR4A1 genes, respectively at 25 kb and 2123-111;

therefore, those genes were included in the chip experiment

together with the previous ones. The results of chip, presented in

Fig. 5, show that a strong SRF signal was detected in Arc, Cfos,

Cyr61, Egr1 and Egr2 and Nr4a1 while no significant signal was

found for RGS2, indicating that the latter gene is likely not to be

regulated by SRF in our plasticity model.

Discussion

The present article identifies three different dynamical patterns

in the early-phase (10–90 min) of the transcriptional response

induced by GabT of organotypic hippocampal cultures and

provides novel information about the role of Serum Response

Factor. The blockage of GABA-A ionotropic channels by means of

gabazine/bicuculline/PTX is a widespread [1][145][184][185]

model of plasticity where the increased synaptic activity triggered

by GabT leads to the up-regulation of a plethora of activity-

dependent genes. While the electrophysiology of GABA-A

antagonists in organotypic hippocampal cultures has been

extensively studied [6][24], the relative variations in the

transcriptome have been so far conducted in dissociated cultures

[1][5][7][186]. This last aspect prompted us to develop a

preliminary assessment with a microarray-based transcriptome

profiling.

The Gene Ontology analysis of microarray data revealed that

the major functions of the 346 genes up-regulated by GabT (p-

value#0.005) are related to the regulation of synaptic transmis-

sion, calcium ions transport, transcription, apoptosis, feeding

behavior, learning and memory. With respect to apoptosis

regulation, the GO analysis further indicates that both positive

and negative regulators of survival are up-regulated in organotypic

cultures and therefore the general effects of GabT on cell fate

seems not to be predictable. Nevertheless, a manual annotation of

the gene functions actually revealed that GabT promotes a push

towards survival, neurogenesis and neuroprotection, confirming

the results obtained in dissociated cultures [1][185] and extending

them to the case of hippocampal organotypic cultures.

To further investigate the dynamics underlying the early-phase

of the regulation of activity-dependent genes, we developed the

quantification of a high temporal resolution time course, ranging

from 10 to 90 minutes, with an average inter-sample time of

10 minutes. The trajectories of the 33 genes included in the time-

course were subjected to a unsupervised k-means clustering: the

unsupervised clustering identified three different dynamical

patterns, as depicted in Fig. 3 and Fig. 4. By crossing the cluster

grouping with the gene functions listed in the manually compiled

vocabulary (see file S2) we found that the group of genes

characterized by a fast rise to a plateau value (cluster 1) seems to be

significantly (p-value,0.05) provided with anti-growth and anti-

survival properties. Since this cluster is characterized by the fastest

response, peaking already at 50 minutes, this data suggests that a

rapid activation of negative regulators of growth, possibly involved

in the initial disassembly of existent structures, is subsequently

followed by an induction of growth promoting genes (cluster 2,

slow up-regulation).

Besides, we also found that cluster 1 is also enriched in SRF,

serum response factor, dependent regulations (p-value#0.02,

Fisher’s exact test). Interestingly, in a previous work [187] with

dissociated cultures we showed that the genes Nr4a1, Arc, Egr1,

Egr2 and Egr3, which belong, in the present paper, to cluster 1

(with the exception of Egr3), are characterized by a marked

dependence on MAPK-dependent regulation when compared to

Bdnf and Homer1a, which instead here belong to cluster 2.

Moreover, a strong dependence Dusp1 and Fos, which again

belong to cluster 1, on MAPK regulation was previously

emphasized in rat neuroendocrine cells [188][189]. These data

suggest that the cluster is particularly dependent on SRF/MAPK

and motivated us to investigate whether the aforementioned SRF

dependent regulations, which were extrapolated from the litera-

ture and derived from different experimental conditions, are still

valid in the case of GabT of organotypic cultures.

To this end, we performed chip, chromatin immunoprecipita-

tion, for detecting SRF binding levels during GabT and we found

that Cyr61, Egr1, Egr2, Fos and Arc present a significant SRF

binding signal. While genes Fos and Egr1 have already been

reported to be regulated by SRF in hippocampal organotypic

cultures [179], ours is the first report for genes Cyr61, Arc and Egr2.

To complete the survey of working CArG boxes in cluster 1, we

analyzed the sequences upstream of TSS for the remaining genes

and we found conserved CArG boxes also upstream of Rgs2 and

Nr4a1. Eventually, the chip assay revealed that the Nr4a1 CArG

box presents a significant SRF signal while no signal was found for

Rgs2. This result is interesting in particular for Nr4a1 gene, for

which the functionality of the aforementioned CArG box has so far

provided motley evidences. In fact, in serum stimulation of NIH-

3T3 fibroblasts [190] and platelet-derived growth factor (PDGF)

stimulation of T98G-glioblastoma [181] the CArG box has proven

to be functional but in hippocampal neuronal cultures [191][192],

cerebellar cortex [127] and in vivo [193] conditions general

findings are in favor of a CREB and MEF2 determinant role.

Therefore, our latter result suggests that, in organotypic cultures,

SRF may play a role in the regulation of Nr4a1 gene during the

intense synaptic activity triggered by GabT.
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In conclusion, this study provides novel insights into the early

dynamics of transcriptional regulation in a plasticity model,

showing how a large group of co-expressed activity-dependent

genes is characterized by consistently different patterns of

induction in the first 90 minutes of tissue response and linking

these patterns to different inherent functions and regulatory

mechanisms. We believe that unveiling the finest tuning in the

regulatory dynamics of plasticity is the key step to gain a more

quantitative awareness of the phenomenon.

Materials and Methods

Ethics Statement
Rat hippocampi were dissected from Wistar rats (P4–P5), in

accordance with the regulations of the Italian Animal Welfare Act,

and the procedure was approved by the local authority veterinary

service (Dr. R Zucca). Every possible effort was taken in order to

minimize both the number and the suffering of used animals. The

experiments were carried out in accordance with the European

Communities Council Directive of 24 November 1986 (86/609/

EEC) and formal approval for experimental procedures was

provided by the Ministry of Health(protocol 13/97–A).

Tissue, pharmacology and Rna extraction
Rat hippocampi were dissected from Wistar rats (P4–P5).

Organotypic cultures were prepared following the roller tube

method [194]. Gabazine was purchased from Tocris (Bristol, UK).

Gabazine treatment (GabT) for microarray samples consisted in

treating the cultures for 90 min with 20 mM of gabazine, a specific

GABA-A receptor antagonist [195]. Gabazine treatment (GabT)

for time course samples consisted in treating the cultures with

20 mM of gabazine for a variable time with time samples ranging

from 10 minutes to 90 minutes. The total RNA for the microarray

samples and the time-course samples was extracted using the

TRIzol reagent (Sigma, Milano, Italy) according to the manufac-

turer’s instructions followed by a DNase I (Invitrogen, Carlsbad,

Figure 5. Analysis of SRF binding sites by chromatin immunoprecipitation. Chromatin fragments of hippocampal organotypic cultures
were immunoprecipitated with anti-SRF antibody. A) Immunoprecipitation levels normalized to input control: the s.e.m. is calculated over three
different replicas. B) Immunoprecipitation of each promoter region, together with input control and IgG antibody, was amplified by PCR. Each sample
is derived from three independent replicas.
doi:10.1371/journal.pone.0068078.g005
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California, USA) treatment to remove any genomic DNA

contamination. The total RNA was further purified using RNeasy

Mini Kit Column (Qiagen, Valencia, CA) and subsequently

quantified by ND-1000 Nanodrop spectrophotometer (Agilent

Technologies, Palo Alto, CA).

Analysis of Microarray data and P-value calculation
For the microarray data, three biological replicas were collected

at 90 min of GabT and Standard Affymetrix protocols were

applied for amplification and hybridization. Gene profiling was

carried out with the Affymetrix RAT2302 GeneChip containing

31099 probes, corresponding to 14181 probes with a gene symbol.

Low level analysis was performed using an Robust Multi-array

Average (RMA) algorithm [196] directly on the scanned images.

Data were organized in matrices ‘‘m6n’’ (m, number of genes; n,

number of replicas). Two samples were considered: an untreated

culture (Cij: i = 1,..,n j = 1,..,m), a culture treated with gabazine (Gij).

Data were analyzed by considering log2 changes of gene

expression in each replicas against its own untreated control, that

is, log2 (Gij/Cij). Thus, from the microarray data we obtained an

‘‘m6n’’ ratio-matrix for each treatment. Considering the three

replicas as independent variables, this matrix was treated as a

multivariate variable in three dimensions. We derived the

empirical cumulative distribution function with upper and lower

bounds of the multivariate variable, using the Kaplan–Meier

estimator (Kaplan and Meier, 1958) so to assign a p-value to all the

genes and select the most significant ones. The microarray data

can be found in the GEO database, accession number:

GSE46864.

GO enrichment analysis
GO enrichment analysis for microarray data was performed

with Gene David [197] (http://david.abcc.ncifcrf.gov/). GO

analysis for the manually annotated vocabulary was performed

according to the following formulas:

The probability to have exactly �xx genes characterized with a

certain ‘‘GO term’’ (for example, ‘‘SRF regulation’’ or ‘‘positive

regulation of synaptic transmission’’), in a cluster of dimension n, is

P(X~�xx)~
N{k

n{�xx

� ��
:

k

�xx

� ���
N

n

� �

Where N is the total number of genes(elements), n is the dimension

of the cluster, k is the total number of genes(elements) which

present the ‘‘GO term’’ under consideration. The cumulative

probability to have an amount of terms equal or higher than �xx, in

a cluster of dimension n, is

P(X§�xx)~
Xmin(n,k)

i~�xx

P(X~i)

Quantitative RT-PCR and time-course analysis
For the time course experiment, the expression level of the

target mRNA was quantified bt RT-PCR. RNA (250 ng) was

reverse-transcribed using SuperScript II reverse transcriptase and

random hexamer (Invitrogen). qRT-PCR was performed using iQ

SYBR Green supermix (Bio-Rad, Munich, Germany) and the iQ5

LightCycler (Bio-Rad). Gene specific primers were designed using

Primer3 [198](http://frodo.wi.mit.edu/). The thermal cycling

conditions comprised 3 min at 95C, and 45 cycles of 10 sec for

denaturation at 95C and 45 sec for annealing and extension at

58C. The expression level of the target mRNA was normalized to

the relative ratio of the expression of Gapdh mRNA. Fold change

calculations were made between treated and untreated samples at

each time point using the DDCT method. Three organotypic

cultures were used for each sample. The 36 primers used for the

time course analysis are provided in table B in file S1.

The resulting time-course data-set consists of three biological

replicas, each one containing 12 time points ranging from 10 m to

90 m. Each raw data time-course replicas obtained from RT-PCR

data was independently fitted with a smoothing spline (Matlab

environment) and normalized to the [0:1] interval. Subsequently,

the three replicas were jointed together and analyzed via a k-

means clustering, based on Euclidean distance (same method as

[[164]]). To identify the optimal number of clusters we adopted

the approach proposed in [167]. Briefly, a function

H(N)~a Nz
1

N

XN

1
dist(ci)

is computed at every k, i.e. cluster number. N is the number of

clusters, dist(ci) is the intra-cluster distance, i.e. the scaled average

squared distance between shapes in the cluster ci and a is a

parameter controlling the grain of the clustering. The minimum of

the function H(N) corresponds to the optimal number of clusters.

The enrichment score for the transcription factors regulatory

evidences was computed using the same approach described in

one of the previous section, ‘‘Analysis of Microarray data’’.

Identification of upstream sequences and transcription
factor binding sites

The 10 k-bp upstream regions for mouse, rat and human of the

cluster 1 genes were extracted from mapviewer (http://www.ncbi.

nlm.nih.gov/mapview/). To identify the putative transcription

factor binding sites within each upstream sequence, a preliminary

verification of the conserved regions among mouse, rat and human

was performed by aligning the sequences with blast-bl2seq (http://

blast.ncbi.nlm.nih.gov/Blast.cgi), using a word letter size 16. To

refine the blast results a further analysis was carried out with

Evoprinter (http://evoprinter.ninds.nih.gov/) [199]. Finally, con-

served domains were analyzed with Jaspar [200] (http://jaspar.

cgb.ki.se/), using the MA0083.1 SRF binding matrix with a

threshold score of 0.8.

Chromatin immunoprecipitation
The chromatin immunoprecipitation assay was performed using

the MAGnify Chromatin Immunoprecipitation System (Invitro-

gen, Catalog Number49-2024) according to the manufacturer’s

instructions with slight modifications. Briefly, organotypic cultures

(ten cultures per condition) were cross-linked at room temperature,

immediately after the GabT, using a PBS solution with

formaldehyde 1%. Shearing was performed with a MSE Soniprep

150 (7 pulses of 5 seconds) to yield an average length of 300 bp.

Samples were immunoprecipitated with 10 ug of anti-SRF

antibody (Santa Cruz Biotechnology, Heidelberg, Germany,

cat.no sc-335x) and with 1 ug of anti-rabbit IgG negative control

antibody. Promoter specific primers were used for amplification:

Nr4a1 Forward: 59-TTAAGAGGTGGGTCGGGTTC-39

Reverse: 59-GCAATCCTTCTCGCACACTA-39

C-fos: Forward: 59-CTCGCCTTCTCTGCCTTTC-39

Reverse: 59-GTAGGATTTCGGGGATGGTT-39

Egr1: Forward: 59-TGGGAGGTCTTCACGTCACT-39

Reverse: 59-GAATCGGCCTCTATTTCAAGG-39
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Egr2: Forward: 59-ATGTGACCGGCAAAAGCTAC-39

Reverse: 59-AATGAATCGCTGCTCTCTCAG-39

Cyr61: Forward: 59-TCAAGAATGCCTTGTGGTTG-39

Reverse: 59-ACGGGGTAGAAGGAGGTGAT-39

Rgs2: Forward: 59-TGCCACCCCAGTAGTTACG-39

Reverse: 59-TTTGCCGAGAGATGAACAGA-39

Arc: Forward: 59-GTGGGGAAGCTCCTTGCT-39

Reverse: 59-CCAGTTAGAGGGCGGTGTT-39
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