73 research outputs found

    Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty

    Get PDF
    Increased failure rates due to metallic wear particle-associated adverse local tissue reactions (ALTR) is a significant clinical problem in resurfacing and total hip arthroplasty. Retrieved periprosthetic tissue of 53 cases with corrosion/conventional metallic wear particles from 285 revision operations for ALTR was selected for nano-analyses. Three major classes of hip implants associated with ALTR, metal-on-metal hip resurfacing arthroplasty (MoM HRA) and large head total hip replacement (MoM LHTHA) and non-metal-on-metal dual modular neck total hip replacement (Non-MoM DMNTHA) were included. The size, shape, distribution, element composition, and crystal structure of the metal particles were analyzed by conventional histological examination and electron microscopy with analytic tools of 2D X-ray energy dispersive spectrometry and X-ray diffraction. Distinct differences in size, shape, and element composition of the metallic particles were detected in each implant class which correlate with the histological features of severity of ALTR and variability in implant performance

    Brain connectivity changes in autosomal recessive Parkinson Disease: a model for the sporadic form

    Get PDF
    Biallelic genetic mutations in the Park2 and PINK1 genes are frequent causes of autosomal recessive PD. Carriers of single heterozygous mutations may manifest subtle signs of disease, thus providing a unique model of preclinical PD. One emerging hypothesis suggests that non-motor symptom of PD, such as cognitive impairment may be due to a distributed functional disruption of various neuronal circuits. Using resting-state functional MRI (RS-fMRI), we tested the hypothesis that abnormal connectivity within and between brain networks may account for the patients' cognitive status. Eight homozygous and 12 heterozygous carriers of either PINK1 or Park2 mutation and 22 healthy controls underwent RS-fMRI and cognitive assessment. RS-fMRI data underwent independent component analysis to identify five networks of interest: default-mode network, salience network, executive network, right and left fronto-parietal networks. Functional connectivity within and between each network was assessed and compared between groups. All mutation carriers were cognitively impaired, with the homozygous group reporting a more prominent impairment in visuo-spatial working memory. Changes in functional connectivity were evident within all networks between homozygous carriers and controls. Also heterozygotes reported areas of reduced connectivity when compared to controls within two networks. Additionally, increased inter-network connectivity was observed in both groups of mutation carriers, which correlated with their spatial working memory performance, and could thus be interpreted as compensatory. We conclude that both homozygous and heterozygous carriers exhibit pathophysiological changes unveiled by RS-fMRI, which can account for the presence/severity of cognitive symptom

    Musculoskeletal injuries among operating room nurses: results from a multicenter survey in Rome, Italy

    Full text link
    Aim: Chronic disorders of the musculoskeletal system, particularly low back pain (LBP), are increasing and represent a social and economic problem of growing importance, especially if correlated with working conditions. Health care workers are at higher risk of developing LBP during work shifts in the hospital. The aim of this study was to assess the prevalence of LBP among operating room nurses and to investigate the risk factors for musculoskeletal injuries in the operating room. Methods: We carried out a cross-sectional study that included operating room nurses from nine hospitals. Information on sociodemographic characteristics, lifestyle habits, working activity and psychological attitude of nurses was collected using an anonymous self-administered structured questionnaire. We evaluated the association of frequency, localization and intensity of LBP (FLI) with qualitative variables, making use of univariate analysis, chi-square test and Fisher's exact test. Multiple logistic regression analysis was performed to identify the variables that affected the FLI. The covariates included in the model were the variables that had a p 35 years vs. age <35 (OR = 2.68; 95% CI = 1.17–6.18) and diurnal work shift vs. diurnal/ nocturnal (OR = 4.00; 95% CI = 1.72–9.0) represent risk factors associated with FLI, while physical activity is a protective factor (OR = 0.47; 95% CI = 0.20–1.08). Conclusion: The data suggest that it is important to promote new programs of prevention based on professional training and physical activity among nurses and to improve the organization of work shifts in the hospital

    Functional Comparison of Innate Immune Signaling Pathways in Primates

    Get PDF
    Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS) and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host–virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV–interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases

    Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus

    Get PDF
    Phage therapy offers a potential alternate strategy for the treatment of peri-prosthetic joint infection (PJI), particularly where limited effective antibiotics are available. We undertook preclinical trials to investigate the therapeutic efficacy of a phage cocktail, alone and in combination with vancomycin, to reduce bacterial numbers within the infected joint using a clinically-relevant model of Staphylococcus aureus-induced PJI. Infected animals were randomised to 4 treatment groups, with treatment commencing 21-days post-surgery: bacteriophage alone, vancomycin alone, bacteriophage and vancomycin, and sham. At day 28 post-surgery, animals were euthanised for microbiological and immunological assessment of implanted joints. Treatment with phage alone or vancomycin alone, led to 5-fold and 6.2-fold reductions, respectively in bacterial load within peri-implant tissue compared to shamtreated animals. Compared to sham-treated animals, a 22.5-fold reduction in S. aureus burden was observed within joint tissue of animals that were administered phage in combination with vancomycin, corresponding with decreased swelling in the implanted knee. Microbiological data were supported by evidence of decreased inflammation within the joints of animals administered phage in combination with vancomycin, compared to sham-treated animals. Our findings provide further support for phage therapy as a tolerable and effective adjunct treatment for PJI

    How Do Human Cells React to the Absence of Mitochondrial DNA?

    Get PDF
    Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA) and the mitochondrial genome (mtDNA). The mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nDNA. Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. To investigate how the cellular transcriptome is modified in response to the absence of mtDNA, we used Affymetrix HG-U133A GeneChip arrays to study the gene expression profile of two human cell lines, 143BTK(-) and A549, which had been entirely depleted of mtDNA (rho(o) cells), and compared it with that of corresponding undepleted parental cells (rho(+) cells).Our data indicate that absence of mtDNA is associated with: i) a down-regulation of cell cycle control genes and a reduction of cell replication rate, ii) a down-regulation of nuclear-encoded subunits of complex III of the respiratory chain and iii) a down-regulation of a gene described as the human homolog of ELAC2 of E. coli, which encodes a protein that we show to also target to the mitochondrial compartment.Our results indicate a strong correlation between mitochondrial biogenesis and cell cycle control and suggest that some proteins could have a double role: for instance in controlling both cell cycle progression and mitochondrial functions. In addition, the finding that ELAC2 and maybe other transcripts that are located into mitochondria, are down-regulated in rho(o) cells, make them good candidates for human disorders associated with defective replication and expression of mtDNA

    Malaria vector research and control in Haiti: a systematic review

    Get PDF
    BACKGROUND: Haiti has a set a target of eliminating malaria by 2020. However, information on malaria vector research in Haiti is not well known. This paper presents results from a systematic review of the literature on malaria vector research, bionomics and control in Haiti. METHODS: A systematic search of literature published in French, Spanish and English languages was conducted in 2015 using Pubmed (MEDLINE), Google Scholar, EMBASE, JSTOR WHOLIS and Web of Science databases as well other grey literature sources such as USAID, and PAHO. The following search terms were used: malaria, Haiti, Anopheles, and vector control. RESULTS: A total of 132 references were identified with 40 high quality references deemed relevant and included in this review. Six references dealt with mosquito distribution, seven with larval mosquito ecology, 16 with adult mosquito ecology, three with entomological indicators of malaria transmission, eight with insecticide resistance, one with sero-epidemiology and 16 with vector control. In the last 15 years (2000–2015), there have only been four published papers and three-scientific meeting abstracts on entomology for malaria in Haiti. Overall, the general literature on malaria vector research in Haiti is limited and dated. DISCUSSION: Entomological information generated from past studies in Haiti will contribute to the development of strategies to achieve malaria elimination on Hispaniola. However it is of paramount importance that malaria vector research in Haiti is updated to inform decision-making for vector control strategies in support of malaria elimination
    • …
    corecore