18 research outputs found

    Glucose-6-Phosphate Dehydrogenase Deficiency in an Endemic Area for Malaria in Manaus: A Cross-Sectional Survey in the Brazilian Amazon

    Get PDF
    BACKGROUND: There is a paucity of information regarding glucose-6-phosphate dehydrogenase (G6PD) deficiency in endemic areas for malaria in Latin America. METHODOLOGY/PRINCIPAL FINDINGS: This study determined the prevalence of the G6PD deficiency in 200 male non-consanguineous individuals residing in the Ismail Aziz Community, on the outskirts of Manaus (Brazilian Amazon). Six individuals (3%) were deficient using the qualitative Brewer's test. Gel electrophoresis showed that five of these patients were G6PD A(-). The deficiency was not associated with the ethnic origin (P = 0.571). In a multivariate logistic regression analysis, G6PD deficiency protected against three or more episodes of malaria (P = 0.049), independently of the age, and was associated with a history of jaundice (P = 0.020) and need of blood transfusion (P = 0.045) during previous treatment for malarial infection, independently of the age and the previous malarial exposure. CONCLUSIONS/SIGNIFICANCE: The frequency of G6PD deficiency was similar to other studies performed in Brazil and the finding of a predominant G6PD A(-) variant will help the clinical management of patients with drug-induced haemolysis. The history of jaundice and blood transfusion during previous malarial infection may trigger the screening of patients for G6PD deficiency. The apparent protection against multiple malarial infections in an area primarily endemic for Plasmodium vivax needs further investigation

    Empoderamiento y feminismo comunitario en la conservación del maíz en México

    Get PDF
    Articulo científico para revista indizada.El objetivo es analizar, desde una perspectiva basada en el feminismo comunitario, el proceso de empoderamiento de las mujeres que conforman un grupo de ocho integrantes matlatzincas de la comunidad de San Francisco Oxtotilpan, México, a través de prácticas productivas, alimentarias y culturales en torno al maíz nativo. Los datos fueron recogidos durante 2014 y 2015 con técnicas etnográficas que incluyen: observación participante, historias de vida, grupos focales, entrevistas semiestructuradas y a profundidad. Son mujeres que muestran cinco dimensiones de poder (social, corporal, material, simbólico y cognitivo) que repercuten en la preservación del maíz nativo, al generar la masa crítica necesaria para incorporar a otras mujeres en acciones favorables para la soberanía alimentaria

    Reference Ranges for the Clinical Laboratory Derived from a Rural Population in Kericho, Kenya

    Get PDF
    The conduct of Phase I/II HIV vaccine trials internationally necessitates the development of region-specific clinical reference ranges for trial enrolment and participant monitoring. A population based cohort of adults in Kericho, Kenya, a potential vaccine trial site, allowed development of clinical laboratory reference ranges. Lymphocyte immunophenotyping was performed on 1293 HIV seronegative study participants. Hematology and clinical chemistry were performed on up to 1541 cohort enrollees. The ratio of males to females was 1.9∶1. Means, medians and 95% reference ranges were calculated and compared with those from other nations. The median CD4+ T cell count for the group was 810 cells/µl. There were significant gender differences for both red and white blood cell parameters. Kenyan subjects had lower median hemoglobin concentrations (9.5 g/dL; range 6.7–11.1) and neutrophil counts (1850 cells/µl; range 914–4715) compared to North Americans. Kenyan clinical chemistry reference ranges were comparable to those from the USA, with the exception of the upper limits for bilirubin and blood urea nitrogen, which were 2.3-fold higher and 1.5-fold lower, respectively. This study is the first to assess clinical reference ranges for a highland community in Kenya and highlights the need to define clinical laboratory ranges from the national community not only for clinical research but also care and treatment

    Study of lymphocyte subpopulations in bone marrow in a model of protein-energy malnutrition

    No full text
    Objective: Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. Hematopoietic tissue requires a high nutrient supply, and a reduction in leukocytes, especially lymphocytes, suggests that some nutritional deficiencies might be altering bone marrow function and decreasing its ability to produce lymphocytes. In this study, we evaluated the effect that PEM has on lymphocyte subtypes and the cell cycle of CD5(+) cells. Methods: Swiss mice were subjected to PEM using a low-protein diet containing 4% protein. When the experimental group had lost about 20% of their original body weight, we collected blood and bone marrow cells and evaluated the hemogram, the myelogram, bone marrow lymphoid markers using flow cytometry, and the cell cycle in CD5(+) bone marrow. Results: Malnourished animals presented anemia, reticulocytopenia, and leukopenia with lymphopenia. The bone marrow was hypocellular, and flow cytometric analyses of bone marrow cells showed cells that were CD45(+) (91.2%), CD2(+) (84.9%), CD5(+) (37.3%), CD3(+) (23.5%), CD19(+) (43.3%), CD22(+) (34.7%), CD19(+)/CD2(+) (51.2%), CD19(+)/CD3(+)(24.0%), CD19(+)/CD5(+) (13.2%), CD22(+)/CD2(+) (40.1%), CD22(+)/CD3(+) (30.3%), and CD22(+)/CD5(+) (1.1%) in malnourished animals and CD45(+) (97.5%), CD2(+) (42.9%), CD5(+) (91.5%), CD3(+) (92.0%), CD19(+) (52.0%), CD22(+) (75.6%), CD19(+)/CD2(+) (62.0%), CD19(+)/CD3(+) (55.4%), CD19(+)/CO5(+) (6.7%), CD22(+)/CD2(+) (70.3%), CD22(+)/CD3(+) (55.9%), and CD22(+)/ CD5(+) (8.4%) in control animals. Malnourished animals also presented more CD5(+) cells in the G0 phase of cell cycle development. Conclusion: Malnourished animals presented bone marrow hypoplasia, maturation interruption, prominent lymphopenia with depletion in the lymphoid lineage, and changes in cellular development. We suggest that these changes are some of the primary causes of lymphopenia in cases of PEM and partly explain the increase in susceptibility to infections found in malnourished individuals. Published by Elsevier Inc.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Pesquisa (CNPq), Brazi

    Reduction of erythroid progenitors in protein-energy malnutrition

    No full text
    Protein-energy malnutrition is a syndrome in which anaemia together with multivitamin and mineral deficiency may be present. The pathophysiological mechanisms involved have not, however, yet been completely elucidated. The aim of the present study was to evaluate the pathophysiological processes that occur in this anaemia in animals that were submitted to protein-energy malnutrition, in particular with respect to Fe concentration and the proliferative activity of haemopoietic cells. For this, histological, histochemical, cell culture and immunophenotyping techniques were used. Two-month-old male Swiss mice were submitted to protein-energy malnutrition with a low-protein diet (20g/kg) compared with control diet (400 g/kg). When the experimental group had attained a 20% loss of their original body weight, the animals from both groups received, intravenously, 20IU erythropoietin every other day for 14 d. Malnourished animals showed a decrease in red blood cells, Hb concentration and reticulocytopenia, as well as severe bone marrow and splenic atrophy. The results for serum Fe, total Fe-binding capacity, transferrin and erythropoietin in malnourished animals were no different from those of the control animals. Fe reserves in the spleen, liver and bone marrow were found to be greater in the malnourished animals. The mixed colony-forming unit assays revealed a smaller production of granulocyte-macrophage colony-forming units, erythroid burst-forming units, erythroid colony-forming units and CD45, CD117, CD119 and CD71 expression in the bone marrow and spleen cells of malnourished animals. These findings suggest that, in this protein-energy malnutrition model, anaemia is not caused by Fe deficiency or erythropoietin deficiency, but is a result of ineffective erythropoiesis

    Anatomia radicular de milho em solo compactado Anatomy of maize roots in compacted soil

    No full text
    O objetivo deste trabalho foi avaliar a relação entre a estrutura anatômica das raízes de milho e os atributos físicos de solo submetido a diferentes graus de compactação. O estudo foi realizado em campo, no Município de Dourados, MS, em Latossolo Vermelho distroférrico, textura muito argilosa. O delineamento experimental foi o de blocos ao acaso, com cinco repetições. O solo utilizado apresentava histórico de oito anos com plantio direto. A compactação adicional do solo foi realizada por meio de tráfego com trator, com uma (PDc1), duas (PDc2), quatro (PDc4) e seis passadas (PDc6) sucessivas, sobre toda a área da parcela. Houve aumento na razão entre o córtex e o cilindro vascular da raiz com o aumento na compactação do solo. Essa razão correlacionou-se negativamente com a macroporosidade e positivamente com a densidade do solo e com a resistência do solo à penetração. O grau de compactação afeta a anatomia radicular do milho, e a resistência do solo à penetração é o indicador físico que melhor expressa esse efeito.<br>The objective of this work was to evaluate the relationship between maize root anatomy and physical attributes of soil subjected to levels of compaction. The experiment was carried out in field conditions, in Dourados, Mato Grosso do Sul state, Brazil, in a clayed Latossolo Vermelho (Rhodic Acrustox). A randomized complete block design was used, with five replicates. The soil was cultivated for eight years under no-tillage. The additional compaction of the soil was done by tractor traffic in one (PDc1), two (PDc2), four (PDc4) and six successive passes (PDc6), in the entire area of the experimental plots. Ratio between the cortex and vascular cylinder of the root increased with soil compaction. This ratio was negatively correlated to macroporosity, and positively to soil density and soil penetration resistance. Soil compaction level affects the anatomy of maize roots, and its penetration resistance is the best physical indicator to express this effect
    corecore