553 research outputs found

    Determining noise and vibration exposure in conifer cross-cutting operations by using Li-Ion batteries and electric chainsaws

    Get PDF
    In many activities, chainsaw users are exposed to the risk of injuries and several other hazard factors that may cause health problems. In fact, environmental and working conditions when using chainsaws result in workers' exposure to hazards such as noise, vibration, exhaust gases, and wood dust. Repeated or continuous exposure to these unfavourable conditions can lead to occupational diseases that become apparent after a certain period of time has elapsed. Since the use of electric tools is increasing in forestry, the present research aims to evaluate the noise and vibration exposure caused by four models of electric chainsaws (Stihl MSA160T, Stihl MSA200C Li-Ion battery powered and Stihl MSE180C, Stihl MSE220C wired) during cross-cutting. Values measured on the Stihl MSA160T chainsaw (Li-Ion battery) showed similar vibration levels on both right and left handles (0.9-1.0 m s-2, respectively) and so did the other battery-powered chainsaw, the Stihl MSA200C (2.2-2.3 m s-2 for right and left handles, respectively). Results showed a range of noise included between 81 and 90 dB(A) for the analysed chainsaws. In conclusion, the vibrations and noise were lower for the battery chainsaws than the wired ones, but, in general, all the values were lower than those measured in previous studies of endothermic chainsaws

    Duodenal-Jejunal Bypass and Jejunectomy Improve Insulin Sensitivity in Goto-Kakizaki Diabetic Rats Without Changes in Incretins or Insulin Secretion

    Get PDF
    Gastric bypass surgery can dramatically improve type 2 diabetes. It has been hypothesized that by excluding duodenum and jejunum from nutrient transit, this procedure may reduce putative signals from the proximal intestine that negatively influence insulin sensitivity ( S I ). To test this hypothesis, resection or bypass of different intestinal segments were performed in diabetic Goto-Kakizaki and Wistar rats. Rats were randomly assigned to five groups: duodenal-jejunal bypass (DJB), jejunal resection (jejunectomy), ileal resection (ileectomy), pair-fed sham-operated, and nonoperated controls. Oral glucose tolerance test was performed within 2 weeks after surgery. Baseline and poststimulation levels of glucose, insulin, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) were measured. Minimal model analysis was used to assess S I . S I improved after DJB ( S I = 1.14 ± 0.32 × 10 −4 min −1 ⋅ pM −1 ) and jejunectomy ( S I = 0.80 ± 0.14 × 10 −4 min −1 ⋅ pM −1 ), but not after ileectomy or sham operation/pair feeding in diabetic rats. Both DJB and jejunal resection normalized S I in diabetic rats as shown by S I levels equivalent to those of Wistar rats ( S I = 1.01 ± 0.06 × 10 −4 min −1 ⋅ pM −1 ; P = NS). Glucose effectiveness did not change after operations in any group. While ileectomy increased plasma GIP levels, no changes in GIP or GLP-1 were observed after DJB and jejunectomy. These findings support the hypothesis that anatomic alterations of the proximal small bowel may reduce factors associated with negative influence on S I , therefore contributing to the control of diabetes after gastric bypass surgery

    Mechanotransduction in human and mouse beta cell lines: reliable models to characterize novel signaling pathways controlling beta cell fate

    Get PDF
    Background and aims: Attempts to influence \u3b2-cell differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/transduction complexity remain elusive. We recently demonstrated that human islets of Langerhans sense the ECM nanotopography and activate a mechanotransductive pathway, which is essential for preserving long-term \u3b2-cell differentiation and function in vitro. However, human islets of Langerhans are extremely heterogeneous and their availability for research purpose is limited. Therefore, aim of the proposed research was to investigate whether mouse and human \u3b2-cell lines might sense changes innthe ECM topography and might be used as a simplified model to dissect the molecular pathways involved in mechanotransduction. Materials and methods: We used supersonic cluster beam deposition to fabricate nanostructured substrates characterized by a quantitatively controllable ECM-like nanoroughness. Mouse \u3b2TC3 and human 1.1B4 cells were seeded on these substrates and after five days in culture, the activation of the mechanotransductive pathway was verified by means of morphological (super-resolution fluorescence microscopy), functional and proteomic techniques. Results: Quantitative immunofluorescence studies demonstrated that the cell-nanotopography interaction affects the focal adhesion structures (smaller vinculin clusters), the organization of the actin cytoskeleton (shorter actin fiber) and the nuclear architecture. Functional studies revealed that nanostructured surfaces improve the \u3b2-cell mitochondrial activity and increase the glucose-stimulated Ca2+currents and insulin release. Label-free shotgun proteomics broadly confirmed the morphological and functional studies and showed the upregulation of a number of mechanosensors and transcription factors involved in \u3b2-cell differentiation in cells grown on nanostructured substrates compared to those grown on flat standard control surfaces. Conclusion: Our data reveal that mouse and human \u3b2-cell lines sense changes in extracellular mechanical forces and activate a mechanotransductive pathway. The findings from this study will be useful to clarify the link between mechanotransduction and cell fate and to successfully engineer scaffolds in order to have functional beta cells

    Listening to Music in the First, but not the Last 1.5 km of a 5-km Running Trial Alters Pacing Strategy and Improves Performance

    Get PDF
    We examined the effects of listening to music on attentional focus, rating of perceived exertion (RPE), pacing strategy and performance during a simulated 5-km running race. 15 participants performed 2 controlled trials to establish their best baseline time, followed by 2 counterbalanced experimental trials during which they listened to music during the first (M-start) or the last (M-finish) 1.5 km. The mean running velocity during the first 1.5 km was significantly higher in M-start than in the fastest control condition (p < 0.05), but there was no difference in velocity between conditions during the last 1.5 km (p > 0.05). The faster first 1.5 m in M-start was accompanied by a reduction in associative thoughts compared with the fastest control condition. There were no significant differences in RPE between conditions (p > 0.05). These results suggest that listening to music at the beginning of a trial may draw the attentional focus away from internal sensations of fatigue to thoughts about the external environment. However, along with the reduction in associative thoughts and the increase in running velocity while listening to music, the RPE increased linearly and similarly under all conditions, suggesting that the change in velocity throughout the race may be to maintain the same rate of RPE increase.Australian Department of Education, Employment and Workplace RelationsAustralian Department of Education, Employment and Workplace Relation

    A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows.

    Get PDF
    Little is known about the effects of commonly found levels of Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cattle. We investigated the effects of regular contamination levels, meaning contamination levels that can be commonly detected in dairy feeds, of deoxynivalenol (DON) and fumonisins (FB) in total mixed ration (TMR) on the performance, diet digestibility, milk quality, and plasma liver enzymes in dairy cows. This trial examined 12 lactating Holstein dairy cows using a 3-period × 3-treatment Latin square design. The experimental period was 21 d of mycotoxin exposure followed by 14 d of washout. During treatment periods, cows received one of 3 diets: (1) CTR (control) diet of TMR contaminated with 340.5 µg of DON/kg of dry matter (DM) and 127.9 µg FB/kg of DM; (2) MTX diet of TMR contaminated with Fusarium mycotoxins at levels higher than CTR but below US and European Union guidelines (i.e., 733.0 µg of DON/kg of DM and 994.4 µg of FB/kg of DM); or (3) MDP diet, which was MTX diet supplemented with a mycotoxin deactivator product (i.e., 897.3 µg of DON/kg of DM and 1,247.1 µg of FB/kg of DM; Mycofix, 35 g/animal per day). During washout, all animals were fed the same CTR diet. Body weight, body condition score, DM intake, dietary nutrient digestibility, milk production, milk composition and rennet coagulation properties, somatic cell count, blood serum chemistry, hematology, serum immunoglobulin concentrations, and expression of multiple genes in circulating leucocytes were measured. Milk production was significantly greater in the CTR group (37.73 kg/d) than in the MTX (36.39 kg/d) and the MDP (36.55 kg/d) groups. Curd firmness and curd firming time were negatively affected by the MTX diet compared with the other 2 diets. Furthermore, DM and neutral detergent fiber digestibility were lower after the MTX diet than after the CTR diet (67.3 vs. 71.0% and 42.8 vs. 52.3%). The MDP diet had the highest digestibility coefficients for DM (72.4%) and neutral detergent fiber (53.6%) compared with the other 2 diets. The activities of plasma liver transaminases were higher after the MTX diet than after the CTR and MDP diets. Compared with the CTR diet, the MTX diet led to slightly lower expression of genes related to immune and inflammatory functions, indicating that Fusarium mycotoxins had an immunosuppressive effect. Our results indicated that feed contaminated with regular levels of Fusarium mycotoxins adversely affected the performance, milk quality, diet digestibility, metabolic variables, and immunity of dairy cows, and that supplementation with mycotoxin deactivator product counteracted most of these negative effects

    Strains of the Lactobacillus casei group show diverse abilities for the production of flavor compounds in 2 model systems

    Get PDF
    peer-reviewedCheese flavor development is directly connected to the metabolic activity of microorganisms used during its manufacture, and the selection of metabolically diverse strains represents a potential tool for the production of cheese with novel and distinct flavor characteristics. Strains of Lactobacillus have been proven to promote the development of important cheese flavor compounds. As cheese production and ripening are long-lasting and expensive, model systems have been developed with the purpose of rapidly screening lactic acid bacteria for their flavor potential. The biodiversity of 10 strains of the Lactobacillus casei group was evaluated in 2 model systems and their volatile profiles were determined by gas chromatography-mass spectrometry. In model system 1, which represented a mixture of free AA, inoculated cells did not grow. In total, 66 compounds considered as flavor contributors were successfully identified, most of which were aldehydes, acids, and alcohols produced via AA metabolism by selected strains. Three strains (DPC2071, DPC3990, and DPC4206) had the most diverse metabolic capacities in model system 1. In model system 2, which was based on processed cheese curd, inoculated cells increased in numbers over incubation time. A total of 47 compounds were identified, and they originated not only from proteolysis, but also from glycolytic and lipolytic processes. Tested strains produced ketones, acids, and esters. Although strains produced different abundances of volatiles, diversity was less evident in model system 2, and only one strain (DPC4206) was distinguished from the others. Strains identified as the most dissimilar in both of the model systems could be more useful for cheese flavor diversification

    A spinal organ of proprioception for integrated motor action feedback

    Get PDF
    Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network

    Sensory profile of Italian Espresso brewed Arabica Specialty Coffee under three roasting profiles with chemical and safety insight on roasted beans

    Get PDF
    Specialty coffee (SC) has been showing an increasing interest from the consumers which appreciate its traceability and the peculiar flavours from each single origin. Additionally, the processes to which coffee fruits underwent to get green coffee characterise the beans in terms of macromolecules acting as substrates during the roasting. This work evaluates via sensory analysed eight SC, roasted at light, medium, and dark level, submitted to Italian espresso extraction, to assess how different roasting levels exalt the expected cup profile obtained by the suppliers via cupping in origin countries. Finally, roasted beans were characterised for physico-chemical features (pH, titratable acidity, caffeine, melanoidins, polyphenols and acrylamide). Sensory analysis demonstrated that the intermediate roasting level and espresso extraction match better attributes from in-origin cupping. Melanoidins (mmol g−1 coffee d.b.) was able to discriminate among roasting levels (light 0.12 Â± 0.01; medium 0.13 Â± 0.003; dark 0.14 Â± 0.01; α = 0.05). Acrylamide analyses ensured compliance with the food safety standards (light 301.9 Â± 37.2 ppb; medium 126.1±19ppb; dark 107.9 Â± 22.5ppb). Physico-chemical features were able to cluster samples from different origins within the same roasting level (α = 0.05). Results showed correlations (α = 0.01) between sensory analysis and physico-chemical values: direct for caffeine and astringency, reverse for perceived acidity in relation to astringency, roasted, dried fruits and nutty notes

    Indoor mobile mapping system and crowd simulation to support school reopening because of covid-19: a case study

    Get PDF
    Occupancy analyses represent a crucial topic for building performance. At present, this is even true because of the pandemic emergency due to SARS-CoV-2 and the need to support the functional analysis of building spaces in relation to social distancing rules. Moreover, the need to assess the suitability of spaces in high occupancy buildings as the educational ones, for which occupancy evaluations result pivotal to ensure the safety of the end-users in their daily activities, is a priority. The proposed paper investigates the steps that are needed to secure a safe re-opening of an educational building. A case study has been selected as a test site to analyse the re-opening steps as required by Italian protocols and regulations. This analysis supported the school director of a 2-to-10 year old school and its team in the decision-making process that led to the safe school re-opening. Available plants and elevations of the building were collected and a fast digital survey was carried out using the mobile laser scanner technology (iMMS - Indoor Mobile Mapping System) in order to acquire three-dimensional geometries and digital photographic documentation of the spaces. A crowd simulation software (i.e. Oasys MassMotion) was implemented to analyse end-users flows; the social distance parameter was set in its proximity modelling tools in order to check the compliance of spaces and circulation paths to the social distancing protocols. Contextually to the analysis of users flows, a plan of hourly air changes to maintain a high quality of the environments has been defined
    • …
    corecore