5,000 research outputs found

    Quasi-periodic solutions of completely resonant forced wave equations

    Full text link
    We prove existence of quasi-periodic solutions with two frequencies of completely resonant, periodically forced nonlinear wave equations with periodic spatial boundary conditions. We consider both the cases the forcing frequency is: (Case A) a rational number and (Case B) an irrational number.Comment: 25 pages, 1 figur

    Phase separation in quasi incompressible fluids: Cahn-Hilliard model in the Cattaneo-Maxwell framework

    Full text link
    In this paper we propose a mathematical model of phase separation for a quasi-incompressible binary mixture where the spinodal decomposition is induced by an heat flux governed by the Cattaneo-Maxwell equation. As usual, the phase separation is considered in the framework of phase field modeling so that the transition is described by an additional field, the concentration c. The evolution of concentration is described by the Cahn-Hilliard equation and in our model is coupled with the Navier-Stokes equation. Since thermal effect are included, the whole set of evolution equations is set up for the velocity, the concentration, the temperature and the heat flux. The model is compatible with thermodynamics and a maximum theorem holds.Comment: Submitted to ZAM

    Considerations on the excitation of black hole quasinormal modes

    Full text link
    We provide some considerations on the excitation of black hole quasinormal modes (QNMs) in different physical scenarios. Considering a simple model in which a stream of particles accretes onto a black hole, we show that resonant QNM excitation by hyperaccretion requires a significant amount of fine-tuning, and is quite unlikely to occur in nature. Then we summarize and discuss present estimates of black hole QNM excitation from gravitational collapse, distorted black holes and head-on black hole collisions. We emphasize the areas that, in our opinion, are in urgent need of further investigation from the point of view of gravitational wave source modeling.Comment: 11 pages, 2 figures, proceedings of the 7th International Conference of the Hellenic Astronomical Society. Complements section VB of gr-qc/051216

    Estimating spinning binary parameters and testing alternative theories of gravity with LISA

    Full text link
    We investigate the effect of spin-orbit and spin-spin couplings on the estimation of parameters for inspiralling compact binaries of massive black holes, and for neutron stars inspiralling into intermediate-mass black holes, using hypothetical data from the proposed Laser Interferometer Space Antenna (LISA). We work both in Einstein's theory and in alternative theories of gravity of the scalar-tensor and massive-graviton types. We restrict the analysis to non-precessing spinning binaries, i.e. to cases where the spins are aligned normal to the orbital plane. We find that the accuracy with which intrinsic binary parameters such as chirp mass and reduced mass can be estimated within general relativity is degraded by between one and two orders of magnitude. We find that the bound on the coupling parameter omega_BD of scalar-tensor gravity is significantly reduced by the presence of spin couplings, while the reduction in the graviton-mass bound is milder. Using fast Monte-Carlo simulations of 10^4 binaries, we show that inclusion of spin terms in massive black-hole binaries has little effect on the angular resolution or on distance determination accuracy. For stellar mass inspirals into intermediate-mass black holes, the angular resolution and the distance are determined only poorly, in all cases considered. We also show that, if LISA's low-frequency noise sensitivity can be extrapolated from 10^-4 Hz to as low as 10^-5 Hz, the accuracy of determining both extrinsic parameters (distance, sky location) and intrinsic parameters (chirp mass, reduced mass) of massive binaries may be greatly improved.Comment: 29 pages, 9 figures. Matches version accepted in Physical Review D. More stringent checks in the inversion of the Fisher matri

    Quasi-T\"oplitz functions in KAM theorem

    Full text link
    We define and describe the class of Quasi-T\"oplitz functions. We then prove an abstract KAM theorem where the perturbation is in this class. We apply this theorem to a Non-Linear-Scr\"odinger equation on the torus TdT^d, thus proving existence and stability of quasi-periodic solutions and recovering the results of [10]. With respect to that paper we consider only the NLS which preserves the total Momentum and exploit this conserved quantity in order to simplify our treatment.Comment: 34 pages, 1 figur

    Turbulence and coarsening in active and passive binary mixtures

    Full text link
    Phase separation between two fluids in two-dimensions is investigated by means of Direct Numerical Simulations of coupled Navier-Stokes and Cahn-Hilliard equations. We study the phase ordering process in the presence of an external stirring acting on the velocity field. For both active and passive mixtures we find that, for a sufficiently strong stirring, coarsening is arrested in a stationary dynamical state characterized by a continuous rupture and formation of finite domains. Coarsening arrest is shown to be independent of the chaotic or regular nature of the flow.Comment: 4 pages, 5 figures; discussion on the dependence of the arrest scale on the shear rate has been added; figures have been modified accordingl

    Assessing the Fundraising Impact of power2give on Local Arts Councils

    Get PDF
    Nonprofit arts organizations, like all nonprofit organizations, are always in search of a fundraising “silver bullet.” Does a program or product exist that raises more money, engages more donors, and minimizes effort and expense? The Arts & Science Council in Charlotte, North Carolina launched a new online crowdfunding platform in 2011 hoping to do just that. Power2give was designed specifically for nonprofit arts organizations to add crowdfunding to their fundraising arsenal. The platform was designed to be an inexpensive and easy to use option for local arts councils to adopt for their communities. Now four years later, power2give has expanded to 24 communities and raised over $6 million for arts organizations. This thesis offers the first in-depth look at how power2give is being used by arts organizations and local arts councils across the nation. Is it a fundraising “silver bullet,” or just another passing trend
    • …
    corecore