1,454 research outputs found

    Points of Inflection: Investment Management Tomorrow

    Get PDF

    Exciton fine structure in perovskite nanocrystals

    Get PDF
    The bright emission observed in cesium lead halide perovskite nanocrystals (NCs) has recently been explained in terms of a bright exciton ground state [Becker et al. Nature 2018, 553, 189−193], a claim that would make these materials the first known examples in which the exciton ground state is not an optically forbidden dark exciton. This unprecedented claim has been the subject of intense experimental investigation that has so far failed to detect the dark ground-state exciton. Here, we review the effective-mass/electron–hole exchange theory for the exciton fine structure in cubic and tetragonal CsPbBr_3 NCs. In our calculations, the crystal field and the short-range electron–hole exchange constant were calculated using density functional theory together with hybrid functionals and spin–orbit coupling. Corrections associated with long-range exchange and surface image charges were calculated using measured bulk effective mass and dielectric parameters. As expected, within the context of the exchange model, we find an optically inactive ground exciton level. However, in this model, the level order for the optically active excitons in tetragonal CsPbBr_3 NCs is opposite to what has been observed experimentally. An alternate explanation for the observed bright exciton level order in CsPbBr_3 NCs is offered in terms of the Rashba effect, which supports the existence of a bright ground-state exciton in these NCs. The size dependence of the exciton fine structure calculated for perovskite NCs shows that the bright–dark level inversion caused by the Rashba effect is suppressed by the enhanced electron–hole exchange interaction in small NCs

    Quasicubic model for metal halide perovskite nanocrystals

    Get PDF
    We present an analysis of quantum confinement of carriers and excitons, and exciton fine structure, in metal halide perovskite (MHP) nanocrystals (NCs). Starting with coupled-band k · P theory, we derive a nonparabolic effective mass model for the exciton energies in MHP NCs valid for the full size range from the strong to the weak confinement limits. We illustrate the application of the model to CsPbBr₃ NCs and compare the theory against published absorption data, finding excellent agreement. We then apply the theory of electron-hole exchange, including both short- and long-range exchange interactions, to develop a model for the exciton fine structure. We develop an analytical quasicubic model for the effect of tetragonal and orthorhombic lattice distortions on the exchange-related exciton fine structure in CsPbBr₃, as well as some hybrid organic MHPs of recent interest, including formamidinium lead bromide (FAPbBr₃) and methylammonium lead iodide (MAPbI₃). Testing the predictions of the quasicubic model using hybrid density functional theory (DFT) calculations, we find qualitative agreement in tetragonal MHPs but significant disagreement in the orthorhombic modifications. Moreover, the quasicubic model fails to correctly describe the exciton oscillator strength and with it the long-range exchange corrections in these systems. Introducing the effect of NC shape anisotropy and possible Rashba terms into the model, we illustrate the calculation of the exciton fine structure in CsPbBr₃ NCs based on the results of the DFT calculations and examine the effect of Rashba terms and shape anisotropy on the calculated fine structure

    Centerscope

    Full text link
    Centerscope, formerly Scope, was published by the Boston University Medical Center "to communicate the concern of the Medical Center for the development and maintenance of improved health care in contemporary society.

    Three dimensional numerical relativity: the evolution of black holes

    Full text link
    We report on a new 3D numerical code designed to solve the Einstein equations for general vacuum spacetimes. This code is based on the standard 3+1 approach using cartesian coordinates. We discuss the numerical techniques used in developing this code, and its performance on massively parallel and vector supercomputers. As a test case, we present evolutions for the first 3D black hole spacetimes. We identify a number of difficulties in evolving 3D black holes and suggest approaches to overcome them. We show how special treatment of the conformal factor can lead to more accurate evolution, and discuss techniques we developed to handle black hole spacetimes in the absence of symmetries. Many different slicing conditions are tested, including geodesic, maximal, and various algebraic conditions on the lapse. With current resolutions, limited by computer memory sizes, we show that with certain lapse conditions we can evolve the black hole to about t=50Mt=50M, where MM is the black hole mass. Comparisons are made with results obtained by evolving spherical initial black hole data sets with a 1D spherically symmetric code. We also demonstrate that an ``apparent horizon locking shift'' can be used to prevent the development of large gradients in the metric functions that result from singularity avoiding time slicings. We compute the mass of the apparent horizon in these spacetimes, and find that in many cases it can be conserved to within about 5\% throughout the evolution with our techniques and current resolution.Comment: 35 pages, LaTeX with RevTeX 3.0 macros. 27 postscript figures taking 7 MB of space, uuencoded and gz-compressed into a 2MB uufile. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ and mpeg simulations at http://jean-luc.ncsa.uiuc.edu/Movies/ Submitted to Physical Review

    Finding Apparent Horizons in Dynamic 3D Numerical Spacetimes

    Get PDF
    We have developed a general method for finding apparent horizons in 3D numerical relativity. Instead of solving for the partial differential equation describing the location of the apparent horizons, we expand the closed 2D surfaces in terms of symmetric trace--free tensors and solve for the expansion coefficients using a minimization procedure. Our method is applied to a number of different spacetimes, including numerically constructed spacetimes containing highly distorted axisymmetric black holes in spherical coordinates, and 3D rotating, and colliding black holes in Cartesian coordinates.Comment: 19 pages, 13 figures, LaTex, to appear in Phys. Rev. D. Minor changes mad

    Dynamics of Gravitational Waves in 3D: Formulations, Methods, and Tests

    Full text link
    The dynamics of gravitational waves is investigated in full 3+1 dimensional numerical relativity, emphasizing the difficulties that one might encounter in numerical evolutions, particularly those arising from non-linearities and gauge degrees of freedom. Using gravitational waves with amplitudes low enough that one has a good understanding of the physics involved, but large enough to enable non-linear effects to emerge, we study the coupling between numerical errors, coordinate effects, and the nonlinearities of the theory. We discuss the various strategies used in identifying specific features of the evolution. We show the importance of the flexibility of being able to use different numerical schemes, different slicing conditions, different formulations of the Einstein equations (standard ADM vs. first order hyperbolic), and different sets of equations (linearized vs. full Einstein equations). A non-linear scalar field equation is presented which captures some properties of the full Einstein equations, and has been useful in our understanding of the coupling between finite differencing errors and non-linearites. We present a set of monitoring devices which have been crucial in our studying of the waves, including Riemann invariants, pseudo-energy momentum tensor, hamiltonian constraint violation, and fourier spectrum analysis.Comment: 34 pages, 14 figure

    The Head-On Collision of Two Equal Mass Black Holes Peter Anninos

    Full text link
    We study the head-on collision of two equal mass, nonrotating black holes. Various initial configurations are investigated, including holes which are initially surrounded by a common apparent horizon to holes that are separated by about 20M20M, where MM is the mass of a single black hole. We have extracted both ℓ=2\ell = 2 and ℓ=4\ell=4 gravitational waveforms resulting from the collision. The normal modes of the final black hole dominate the spectrum in all cases studied. The total energy radiated is computed using several independent methods, and is typically less than 0.002M0.002 M. We also discuss an analytic approach to estimate the total gravitational radiation emitted in the collision by generalizing point particle dynamics to account for the finite size and internal dynamics of the two black holes. The effects of the tidal deformations of the horizons are analysed using the membrane paradigm of black holes. We find excellent agreement between the numerical results and the analytic estimates.Comment: 33 pages, NCSA 94-048, WUGRAV-94-

    Multi-core FPGA Implementation of ECC with Homogeneous Co-Z Coordinate Representation

    Get PDF
    Elliptic Curve Cryptography (ECC) is gaining popularity in recent years. Having short keys and short signatures in particular makes ECC likely to be adopted in numerous internet-of-things (IoT) devices. It is therefore critical to optimize ECC well for both speed and power consumption. Optimization opportunities exist on several different levels: algorithm, architecture, and/or implementation. We combine optimizations at every level in an efficient multi-core FPGA implementation. The core building block for our implementation is a Montgomery multiplier capable of modular additions and multiplications with an arbitrary prime modulus. The size of the prime modulus can also be changed easily, for which we have implemented and tested up to 528-bits used in the NIST P-521 curve. Based on this building block, we have developed a multi-core architecture that supports multiple parallel modular additions, multiplications, and inverses. Efficient ECC group addition and doubling are then built from this foundation. To support a wide variety of curves and at the same time resist timing/power-based side-channel attacks, our scalar multiplication is implemented using the Co-Z ladder due to Hutter, Joye, and Sierra. This approach also allows us to trade off between speed and power consumption by using a different number of Montgomery cores

    Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung.

    Get PDF
    The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.This work was supported by the Biotechnology and Biological Sciences Research Council (grant numbers S18103 and BB/H01697X/1).This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013611
    • 

    corecore