
Multi-core FPGA Implementation of ECC with
Homogeneous Co-Z Coordinate Representation

Bo-Yuan Peng1, Yuan-Che Hsu2, Yu-Jia Chen2, Di-Chia Chueh2, Chen-Mou
Cheng3, and Bo-Yin Yang1

1 Academia Sinica, Taiwan
{bypeng,by}@crypto.tw

2 National Taiwan University, Taiwan
{b01901138,b01901017,b01901020}@ntu.edu.tw

3 Osaka University, Japan
chenmou.cheng@gmail.com

Abstract. Elliptic Curve Cryptography (ECC) is gaining popularity in
recent years. Having short keys and short signatures in particular makes
ECC likely to be adopted in numerous internet-of-things (IoT) devices.
It is therefore critical to optimize ECC well for both speed and power
consumption. Optimization opportunities exist on several different lev-
els: algorithm, architecture, and/or implementation. We combine opti-
mizations at every level in an efficient multi-core FPGA implementation.
The core building block for our implementation is a Montgomery multi-
plier capable of modular additions and multiplications with an arbitrary
prime modulus. The size of the prime modulus can also be changed eas-
ily, for which we have implemented and tested up to 528-bits used in
the NIST P-521 curve. Based on this building block, we have developed
a multi-core architecture that supports multiple parallel modular addi-
tions, multiplications, and inverses. Efficient ECC group addition and
doubling are then built from this foundation. To support a wide variety
of curves and at the same time resist timing/power-based side-channel
attacks, our scalar multiplication is implemented using the Co-Z ladder
due to Hutter, Joye, and Sierra. This approach also allows us to trade
off between speed and power consumption by using a different number
of Montgomery cores.

Keywords: ECC, Co-Z, Multi-Core, FPGA, Montgomery Reduction.

1 Introduction

Elliptic Curve Cryptography (ECC) was invented independently by Koblitz and
Miller [1, 2] in the 1980s and has seen increasing use for information security in
the last decade. The most important operations in ECC are scalar multiplication
and point (group) addition. Most ECC implementations require many arithmetic
operations modulo a prime (of 256–521 bits, as per the desired security level).
These are complex, resource-intensive operations.

There are many different techniques to speed up ECC operations, e.g.:

2 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

1. Choose a curve of a special form, such as Montgomery or Twisted Edwards
Curves [3, 4] where the number of modular multiplications can be reduced.

2. Choose a better representation for the point on the curve. Every extant
representation uses a scaling factor to avoid computing expensive modular
inverses. On short Weierstrass curves, the most common representations are
homogeneous and Jacobian projective coordinates.

3. Better big-integer modular arithmetic such as Montgomery Reductions [5].

As more and more devices are connected into the “internet of things”, effi-
cient network security solutions become necessaries with many possible trade-offs
among cost, power consumption, security level, and flexibility.

Flexibility in the security solution can be achieved via FPGAs, a practice
that recently became more fashionable [6]. FPGAs are reprogrammable and any
excess LUTs can always be used for extra functionality. In networking applica-
tions, a functional unit may be cloned dozens of times on the FPGA and properly
scheduled to run many similar operations simultaneously. We can do the same
with the big integer modular multiplications in ECC. An obvious caveat is that
n copies of the key unit does not automatically make things n times as fast, as
there may be bottlenecks scheduling the critical operations.

In this work, we have developed a computing architecture with multiple
Montgomery Reduction cores (from 2 to many). Each Montgomery Reduction
core includes two multipliers and completes one 528-bit Montgomery multiplica-
tion in 66 cycles with frequency faster than 30 MHz on the Xilinx R© Zynq-7000TM

All Programmable SoC. We use this architecture to implement a general high-
security ECC engine compatible with all short Weierstrass Curves and prime
moduli up to 521 bits. These include the 256-bit secure NIST [15] and Brainpool
[16] curves.

Because we cannot restrict ourselves to Montgomery or Edwards curves, we
use the Co-Z ladder by Hutter et al. [8] for scalar multiplications (and Cohen et
al. [9] for point additions), which is resilient against power or timing attacks.

Our design is modular and scalable (in numbers of cores and also bitlength
down to 256); we also describe, to the best of our knowledge, for the first time
how the Co-Z ladder can be flexibly implemented with Montgomery reduction
units. The main ladderstep can be performed in as few as 3 rounds of big integer
multiplications (plus extra modular additions) with 12 Montgomery cores. In
addition, we provide good scheduling for 1, 2, 3 or 5 Montgomery cores.

The rest of this paper is structured as follows:

– Section 2 surveys the history and related works, including the formulas that
evaluates the scalar multiplications and designs related to what we used.

– Section 3 analyzes the degree of parallelism of the Co-Z ladderstep and
describe the requirements an optimal scheduling of this step.

– Section 4 describes our hardware architecture with modular and flexible
Montgomery multipliers and how we arrived at the design.

– Section 5 describes our implementation and test results in more detail.
– Section 6 is the Conclusion and discusses possible future work.

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 3

2 History and Related Work

ECC and Notations. Koblitz and Miller [1, 2] independently suggested using
discrete logarithms on the rational points of an elliptic curve group over a finite
field for cryptosystems. In this paper we stick to nonsingular (a, b ∈ Fp with
4a3 + 27b2 6= 0) elliptic curves in short Weierstrass form over prime fields,

E(Fp) := {(x, y) ∈ Fp × Fp| y2 = x3 + ax+ b} ∪ {O} (1)

E(Fp) comprises points satisfying the curve equation E : y2 = x3 + ax+ b plus a
“point at infinity” O. We can define an abelian group on E(Fp) such that O is
the unit element, and any three co-linear points add up to O.

The group order is denoted ` (with `/p ≈ 1), which we want to be a small
multiple of a large prime q. The scalar multiplication Q = 〈k〉P, is defined as
repeated addition on k copies of a point P. On good curves, it is difficult given P
and Q to find k such that Q = 〈k〉P (takes time Θ(

√
q) with the best methods

we know). This is the elliptic curve discrete logarithm problem (ECDLP). A
scalar multiplication Q = 〈k〉P in contrast takes time polylog(p) given k and P.

Computing Scalar Multiplication and Coordinates. In the early days of cryptog-
raphy, exponentiation in groups in general including scalar multiplications on
elliptic curve groups are performed using the double-and-add approach. How-
ever, Kocher noted that we can break such implementations using side-channel
attacks [10], by observing timing or power usage patterns. Even “double-and-
always-add” approaches [11] designed to evade Kocher’s attacks at the cost of
time and energy can be vulnerable to other, more advanced side-channel attacks
[12, 13].

An approach to scalar multiplication generally resilient to side-channel at-
tacks is differential addition chains. The original example, where we can compute
〈2〉Q and P + Q from P,Q,P−Q (Alg. 1), is the Montgomery ladder [4].

Algorithm 1: Montgomery Ladder [4]

Input: P ∈ E(Fp), k = (kn−1, ..., k0)2 ∈ N
Output: Q = 〈k〉P

1 R0 = O; R1 = P
2 for i = n− 1 downto 0 do
3 t← ki
4 R1−t ← R1−t + Rt

5 Rt ← 〈2〉Rt

6 end
7 return R0

4 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

Curve Form and Point Representations. [4] uses two numbers in Fp to represent
each of two points R0,R1 on the curve. That would be normal, except the two
numbers for each point only relate directly to one coordinate (x0 = X0/Z0, x1 =
X1/Z1) out of two. The Montgomery curve y2 = x3+4Ax2+x is used to facilitate
the Montgomery Ladder. These choices of curve, algorithm and representation
are synergetic, being efficient and naturally resilient against side channels.

The representation x = X/Z, a homogeneous projective coordinate, demon-
strates the almost universal use of scaling factors to avoid computating inverses
in Fp. In fact, for short Weierstrass curves alone, there are two different common
sets of projective coordinates: homogeneous, where (X,Y, Z) denotes the point
(X/Z, Y/Z); and Jacobian, where (X : Y : Z) denotes the point (X/Z2, Y/Z3).

The Montgomery-curve-and-ladder combination is still one of the best meth-
ods to implement ECC for security and speed today, illustrating the importance
of a good set of choices of algorithm, curve and representation (cf. [14]).

Co-Z ladder for NIST Curves. Most of the time twisted Edwards curves [3]
(all birationally equivalent to Montgomery curves) offers the best all-around
performance. However, in some cases compatibility for short Weierstrass curves
not equivalent to Montgomery curves (e.g., NIST [15] /Brainpool [16] curves) is
required.

In 2011, Hutter et al. described what as far as we know is the best general
differential chain implementation for scalar multiplications on a general short
Weierstrass curve [8]. Like the original Montgomery chain, only the X-parts of
homogeneous projective coordinates need to be kept. One of the main features
of the new method is that the two points R0 and R1 shares Z coordinates
during each ladderstep. The y part of the result can be reconstructed at the end,
enabling compressed public keys and signatures. We call this the Co-Z ladder.

Co-Z Ladder Formulas. Let P1 = (X1, Y1, Z), P2 = (X2, Y2, Z) and P1−P2 =
±P where P = (xP , yP). Further let P1 + P2 = (X ′1, Y

′
1 , Z

′) and 〈2〉P2 =
(X ′2, Y

′
2 , Z

′). Given (X1, X2, Z) and xP we can compute (X ′1, X
′
2, Z

′) via
X ′1 = V [(X1 +X2)(X2

1 +X2
2 − U + 2aZ2) + 4bZ3 − xPZU]

X ′2 = U [(X2
2 − aZ2)2 − 8bZ3X2]

Z ′ = UV Z

(2)

where U = (X1 − X2)2 and V = 4X2(X2
2 + aZ2) + 4bZ3. In the appendix,

we give the complete process (Alg. 3) to evaluate formula (2). The effort in
the computation is essentially 11 regular big-integer multiplications (denoted as
M) and 5 big-integer squarings (denoted as S), or 11M + 5S. Note that some
multiplications are by a and 4b, which may not be as large.

Hutter et al. also noted we can forget Z and instead track (X1, X2, TP , Ta, Tb)
where TP = xPZ, Ta = aZ2 and Tb = 4bZ3, with 10M+5S per ladderstep with

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 5

the formulas (3). The appendix details the complete procedure in Alg. 4.

T ′P = TPW

T ′a = TaW
2

T ′b = TbW
3

X ′1 = V [(X1 +X2)(X2
1 +X2

2 − U + 2Ta) + Tb]− T ′P
X ′2 = U [(X2

2 − Ta)2 − 8X2Tb]

(3)

where U = (X1 −X2)2, V = 4X2(X2
2 + Ta) + Tb and W = UV .

Recovering y Coordinates. The Co-Z ladder usually ignores the y coordinates
of the elements in E(Fp) However, in some protocols (such as MQV) the y co-
ordinate of Q = 〈k〉P is required. If using differential addition of Alg. 3, cor-
responding to formulas (2), we see the output (X1, X2, Z), We can compute
Q = (X ′1, Y

′
1 , Z

′) using 10M + 2S as follows (Alg. 5):
X ′1 = 4yPX1Z

2

Y ′1 = 2[(xPX1Z + aZ2)(xPZ +X1)−X2(xPZ −X1)2] + 4bZ3

Z ′ = 4yPZ
3

(4)

If using Alg. 4, corresponding to formulas (3), we see the output (X1, X2, Z),
We can compute Q = (X ′1, Y

′
1 , Z

′) using 10M + 3S as follows (Alg. 6):
X ′1 = 4yPxPT

2
PX1

Y ′1 = x3P [Tb + 2(TPX1 + Ta)(X1 + TP)− 2X2(X1 − TP)2]

Z ′ = 4yPT
3
P

(5)

This Co-Z ladder from Hutter et al. is not listed on [14], which is usually
a very comprehensive reference. We believe that it is currently the best scalar
multiplication method on general short Weierstrass curves.

Components of the Co-Z Ladder. A scalar multiplication in the NIST P-521
curve takes about 8000 modular multiplications (treating squaring and multi-
plication as the same), and we are yet to build the requisite multiplier. The
multi-staged Montgomery reduction method [5] is presently the de facto stan-
dard approach for generic modular multiplications. This is well-studied and we
omit details about Montgomery modular multiplier unit. In practice our imple-
mentation need to fit the FPGA platform and the practical requirement.

3 Task Scheduling in the Co-Z Ladder

Whenever multipliers are being added, two questions are inevitably raised:

1. Can n Montgomery cores be used efficiently? I.e. can Algorithm 3–6 be
completed within d16/ne, d15/ne, d12/ne, and d13/ne rounds of big-integer
multiplications, respectively? (Of course, Alg.3 and 4 are more important.)

6 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

2. What is the least number of rounds of big-integer multiplications for Alg. 3–
4 (and less importantly Alg. 5 and 6)? How many Montgomery cores are
required in each case?

These are classical problems in parallel computing, that becomes practical to
those seeking to speed up ECC. To solve this problem, the targeted algorithm
will be transformed into a task schedule graph, which is a directed acyclic graph
(DAG) in which each directed edge implies the causality between the steps (ver-
tices in the graph) in the algorithm. Solving the famous DAG scheduling problem
then gives the answers to the above two questions [18].

Here we analyze the degrees of parallelism of the more significant Algorithm
3–4. See the appendix for the corresponding Algorithm 5–6. Compared with mul-
tiplication, the big-integer addition/subtraction is much faster, so we will focus
on the scheduling of former. Preferably, we would like to have all our Mont-
gomery cores to run and stop (almost) at the same time to ease our scheduling
task. The relationship between the number of Montgomery cores and the number
of rounds of big-integer multiplications required is shown in Table 1.

Table 1. The number of rounds of big-integer multiplications required to perform
Co-Z ladder in [8]. In daggered (†) cases, small and fixed a and b may improve the
performance by one round.

cores Alg. 3 (11M + 5S) Alg. 4 (10M + 5S) Alg. 5 (10M + 2S) Alg. 6 (10M + 3S)

2 8 rounds† 8 rounds 6 rounds† 7 rounds

3 6 rounds† 5 rounds 4 rounds 5 rounds

4 5 rounds 5 rounds 4 rounds 4 rounds

5 4 rounds 5 rounds 3 rounds 3 rounds

enough 3 rounds/12 cores 4 rounds/? cores 3 rounds/5 cores 3 rounds/5 cores

3.1 Critical Paths Evaluating (X1, X2, TP , Ta, Tb)

We start with Algorithm 4 and 6 as fewer times of big-integer multiplications
are required in Algorithm 4 than in Algorithm 3, and the differential addition
will be performed for a lot of times in Montgomery ladder. To find the critical
paths of the algorithms, we need to transform them into task schedule graphs.
The task schedule graph of algorithm 4 is shown in Figure 1(a). For all of the
task schedule graphs in this paper, each edge indicates the causality between the
connected blocks (vertices), where the left block is performed earlier than the
right one. The floating edges imply that it is necessary to retrieve the input data
of the algorithm to perform the connected blocks. The white blocks indicate the
big-integer multiplications, and the black ones indicate the big-integer additions
or subtractions. We can omit all of the black ADD/SUB blocks in order to find
the lengths of the critical paths with respect to big-integer multiplication blocks.
The graph with ADD/SUB omitted is given in Figure 1(b).

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 7

(a) (b)

Fig. 1. The task schedule graph of Algorithm 4. The full schedule is shown in (a) and
ADD/SUB blocks are omitted in (b).

Observing in Figure 1(b), we can easily find the critical paths of Algorithm
4 with respect to big-integer multiplications are 〈3 → 11 → 22 → {23, 24} →
{26, 27}〉 (23 → 26 invalid), and the length is 5. Recalling that 10M + 5S are
required (15 in total), if Algorithm 4 is adopted to perform formula (3), it may be
efficient (that is, without any core always idle) to construct a 2-Montgomery-core
and a 3-Montgomery-core schedule, but a 4-Montgomery-core schedule cannot
be efficient if a 3-Montgomery-core schedule is found.

3.2 2 and 3 Cores

To construct the 2-core and 3-core schedules for Algorithm 4 we will follow the
strategies below.

1. One round of big-integer multiplication on each core will start at the same
time. We can use extra caution in implementing the Montgomery reductions
such that all the cores stop at the same time.

2. If there are different schedules that run with the same number of rounds of
big-integer multiplications, pick the schedule using fewer big-integer regis-
ters. If all of the candidate schedules use the same number of large number
registers, pick the schedule with fewer rounds of ADD/SUB operations.

The 2-core and 3-core schedules for Algorithm 4 are shown as Algorithm 7
and 8, respectively. We can see that the 2-core schedule takes 8 rounds, while
the 3-core, 5 rounds.

3.3 4 and 5 Cores: Critical Paths Evaluating (X1, X2, Z)

We have shown that the lengths of critical paths in Algorithm 4 is 5 with re-
spect to big-integer multiplication rounds, which means that it is not efficient
to construct a 4-Montgomery-core system to perform Algorithm 4. Algorithm
4 is designed to reduce the rounds of big-integer multiplications in a single-
Montgomery-core system, as Algorithm 3 requires one more multiplication. In

8 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

multi-core systems, the main concern is not the total number of multiplications
performed but the time to finish running all the multiplications. It may be pos-
sible to build a schedule for Algorithm 3 with shorter critical path length. The

(a) (b)

Fig. 2. The task schedule graph of Algorithm 3.

task schedule graph for Algorithm 3 is given in Figure 2. The critical path is
〈1→ 3→ 4→ 18→ 28〉, but actually this critical path can be reduced. 4bZ3 is
evaluated at step 4 in Algorithm 3, and here we shall inspect in more detail all
of the predecessor steps related to step 4.

R1 ← Z2

R3 ← Z ×R1

R4 ← 4b×R3

R1 ← Z2

R′3 ← 4b× Z
R′4 ← R1 ×R′3

We can see 4bZ3 is originally evaluated as the product of 4b and Z3, but
actually it can be evaluated from the product of 4bZ and Z2, both of which
are of degree 2. Since Z3 is referenced only in step 4, we can modify step 3
and 4 in Algorithm 3, resulting in the modified task schedule graph shown in
Figure 3. Now the critical path length is 4 with respect to rounds of big-integer
multiplications. This observation may be generalized to more cases. To evaluate
the value of a monomial x = xr00 , ..., x

rn−1

n−1 with total degree r = r0 + ...+ rn−1,

it is the best to generate the divisor xa = xa0
0 , ..., x

an−1

n−1 and xb = xb00 , ..., x
an−1

n−1 ,
where x = xaxb, dr/2e − 1 ≤ a = a0 + ... + an−1 ≤ dr/2e and dr/2e − 1 ≤ b =
b0 + ...+ bn−1 ≤ dr/2e if we want to shrink the critical path generating x. This
observation will be important in subsection 3.4.

A 5-Montgomery-core schedule with 4 rounds can be created directly from
Figure 3(b). Observing that 11M + 5S are required in the algorithm, as well as
that only step 28, 29, and 30 (3 in total) can be performed in the last round,
there will be 13 big-integer multiplications yet to be performed before the last
round. Therefore, there exists a 4-Montgomery-core system that can perform
Algorithm 3 in 5 rounds of big-integer multiplications. An additional note is

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 9

(a) (b)

Fig. 3. The task schedule graph with step 3 and 4 modified in Algorithm 3.

that when it is the case that a and 4b are constants, both 2-Montgomery-core
and 3-Montgomery-core systems can perform Algorithm 3 with one round fewer
than original cases. This fact makes it more competitive than Algorithm 4.

3.4 How Many Cores Are Required for the Fastest Performance?

The next problem in implementing the Co-Z approach is the resource require-
ment if we want to speed up the evaluations to the extreme. How many rounds
of big-integer multiplications are required at least? In this case, how many cores
are required?

By induction, we can see that to evaluate a monomial of degree n, the best
approach will take dlg ne rounds of multiplications. To estimate the requirement,
let us start with the degrees of the elements in formula (4). We can easily see
deg(X ′1) = deg(Z ′) = 4 with respect to (X1, X2, Z, xP , yP , a, 4b) and then
at least 2 rounds of big-integer multiplications are required to evaluate both X ′1
and Z ′. Observing that the elements of the highest degree in Y ′1 are of degree
5, at least 3 rounds of big-integer multiplications are required to evaluate Y ′1 .
Similar reasoning applies to formula (5), and 3 rounds of big-integer multiplica-
tions are necessary. Therefore, a 5-Montgomery-core system can lead to the best
performance of time to recover (X ′1, Y

′
1 , Z

′).
Similar analysis can be applied to formula (2), but the story is more compli-

cated. It is easy to see the degrees of U , V , X ′1, X ′2 and Z ′ in formula (2) with
respect to (X1, X2, Z, xP , a, 4b) are 2, 4, 8, 8 and 7, respectively. It is obvious
that evaluating U using one big-integer multiplication is optimal. It is a good
news that X ′1 = V × fX′1(X1, X2, Z, xP , a, 4b) where both V and fX′1(·) are of
degree 4, which means we may optimize the evaluation procedure of V and fX′1()
(with 2 rounds of big-integer multiplications) and then get the optimal flow to
evaluate X ′1. The fact Z ′ = UV Z = UZ × V makes the optimization procedure
of evaluating Z ′ to depend also on that of evaluating V .

X ′2 = U × fX′2(X1, X2, Z, xP , a, 4b) brings a problem, as fX′2(·) is of degree
6. A better approach is to try to factor fX′2(·) as a product of a quadratic

10 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

polynomial and a quartic polynomial, but it is impossible here. A second choice
is given by

fX′2 = (X2
2 − aZ2)2 − 8bZ3X2

= X4
2 − 2aX2

2Z
2 + a2Z4 − 8bZ3X2

= X2
2 (X2

2 − 2aZ × Z) + Z2[(aZ)2 − 8bX2Z]

(6)

We can evalaute UX2
2 , UZ2, X2

2 − 2aZ2, and (aZ)2− 8bX2Z in 2 rounds of big-
integer multiplication and then find X ′2 in the next round (3 rounds in total).
To see how to evaluate V and fX′1(·), we observe that

V = 4X2(X2
2 + aZ2) + 4bZ3

= 4X2 ×X2
2 + 4X2Z × aZ + 4bZ × Z2

(7)

fX′1 = 2(X1 +X2)(X1X2 + aZ2) + 4bZ3 − xPZU
= 2X1X2(X1 +X2) + aZ × 2Z(X1 +X2) + 4bZZ2 − xPZU

(8)

Now we can build a 12-Montgomery-core system to perform Algorithm 3, and
the key schedule how to use the Montgomery cores is given as follows:

Table 2. The key schedule to perform Algorithm 3.

Round List of Multiplication

1 U , X2
2 , aZ, Z2, X2Z, 4bZ, xPZ, (X1 + X2)Z, X1X2

M1 = U ·X2
2 , M2 = aZ · Z, M3 = U · Z2, M4 = (aZ)2,

M5 = 4b ·X2Z, M6 = X2 ·X2
2 , M7 = aZ ·X2Z, M8 = 4bZ · Z2,

2 M9 = U · Z, M10 = (X1 + X2)Z · aZ, M11 = (X1 + X2)X1X2, M12 = U · xPZ
fX′1 = 2M11 + 2M10 + M8 −M12

V = 4M6 + 4M7 + M8

3 X ′1 = N1 = V · fX′1 , Z′ = N2 = M9 · V
N3 = M1 · (X2

2 − 2M2), N4 = M3 · (M4 − 2M5), X ′2 = N3 + N4

We give only one remark here for formula (3). With respect to (X1, X2, TP ,
Ta, Tb), the degrees of T ′a and T ′b are 11 and 16, respectively. To perform Algo-
rithm 4, at least 4 rounds of big-integer multiplications will be necessary. Since
we have already found a 5-Montgomery-core system that perform one differen-
tial addition in 4 rounds of multiplications, it is not suggested to implement a
system that performs Algorithm 4 in 4 rounds of big-integer multiplications.

4 Multi-Montgomery-Core Hardware Architecture

In this section, we suggest a hardware architecture with multiple Montgomery
reduction cores. A typical Montgomery reduction core evaluates

R = MMD(A,B, P) = ABD−n mod P (9)

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 11

where A, B, P are of n digits at most in D-ary presentation. We note that P is
usually the prime number p forming the prime field Fp or the group order of the
elliptic curve group q = |E|, which is fixed during one operation of ECC. This
suggests that P−1 mod D can be pre-computed during the setup phase, so we
will assume that it is ready for us. Therefore, each Montgomery multiplier will get
two inputs (A, B) and generate one output R. A classical 2R1W block memory
can provides the bus width enough for one Montgomery multiplier. When there
are 2 or more Montgomery multipliers, a typical choice to use a MUX/deMUX
to collect the outputs of the Montgomery multipliers, and to dispatch the value
in the memory to the specified inputs of the multipliers. This approach will cost
more cycles on the MUX/deMUX.

Fig. 4. The proposed block diagram.

Figure 4 illustrates the hardware architecture of a multi-multiplication-core
system. A finite state machine or a controller handles the addresses for the mem-
ory pool. There are paths from the input of the whole system to the write-data
buses, and the controller can assign some pre-defined direct values to the write-
data buses. The data buses do not bother the controller directly, but there are
some cases in which we need to check if the outputs of the large number arith-
metic units become 0. For example, we need to check if both the input [23] and
the output (defending the fault attacks) affine (x, y)-coordinates implies valid
elements in the elliptic curve group. One comparator to zero, whose comparison
result is a flag for the controller, is installed from the output bus of each large
number arithmetic unit.

5 Implementation and Results

We show our result with a 3-Montgomery-core system, a 5-Montgomery-core
system, and/or a 12-Montgomery-core system. For the 3-core and the 5-core
system, the maximum bit sizes are scalable and we provide the results for 264-
bit (suitable for 256-bit fields) and for 528-bit (suitable for 521-bit or 512-bit
fields) operations in ECC. The Montgomery reduction cores, standing for the
big integer multipliers, are of base d = 28. The detailed design for the the

12 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

Montgomery reduction cores is shown in the appendix. A remark is given here
that additional BRAM blocks (named as xP−1P pools) are allocated in order
to restore pre-evaluated values that are often used in the Montgomery cores.

In this work, Xilinx R© Zynq-7000TM All Programmable SoC (APSoC) on
AVNet R© / Digilent R© ZedBoardTM is adopted for the 3-core system, and that on
Xilinx R© ZC706 Evaluation Kit is adopted for the 5-core system and the 12-core
system. We also show our result about the resource requirement for multiple
3-core and 5-core ECC engines in one system on ZC706 board, which implies
that to build multiple 3-core engines in one system is better if there are sufficient
resources to build a 12-core system.

No DSP slices are used in the system as DSP slices may be used for multi-
media purpose for other components implemented in it.

In our system, the functions of ECC operations that are often used include:

1. Re-configurable parameters of a, b, p, q = |E|, and the base point G.
2. Scalar multiplication with the scalar k and the element P in the elliptic

group E .
3. Group point addition of the elements P and Q in the elliptic group E . The

classical approach by Cohen et al. [9] is applied.
4. Large number multiplication, addition, and subtraction modulo the group

order q = |E|.
5. find the large number inverse modulo the group order q = |E|. We didn’t

implement the Montgomery batch inversion [4], but it can be easily imple-
mented as the finite state machine is rather simple.

5.1 3-Montgomery-Core System

The 3-Montgomery-core system is implemented on ZedBoardTM, on which a Z-
7020 APSoC equivalent to an Artix R©-7 FPGA is used. There are 53200 look-up
tables and a Dual ARM R© CortexTM-A9 MPCoreTM processor on this APSoC
[7], where the protocols (such as ECDH or ECDSA) is implemented on the ARM
processor. A parameter setting the maximum compatible bit-size is configured
in the 3-core system in our design. Here a 264-bit version and a 528-bit version
are synthesized and tested with NIST curves, Brainpool curve P512 r1, and SEC
P256 k1 curve [17] (a.k.a. the Bitcoin curve) are tested in both of the systems.

The resource requirement of the both systems is given as Table 3, and Table
4 shows the performances of the scalar multiplications on the systems. It should
be noticed that there are two similar but different sorts of LUTs, so the LUT
count of each module only implies the size scale of the module, and varies a little
if the module is placed with different floor plans.

5.2 5-Montgomery-Core System

The 5-Montgomery-core system is implemented on ZC706 Evaluation Kit, on
which a Z-7045 APSoC equivalent to a Kintex R©-7 FPGA is used. There are
218600 LUTs and the same dual-core processor as in Z-7020 inside the APSoC

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 13

Table 3. Resource Requirement of our 3-Montgomery-core system on ZedBoardTM. n
in S3,n implies the maximum n-bit compatibility design. No DSP slices are used.

Module

S3,264 S3,528
fmax = 45MHz fmax = 32.26MHz

Slice Slice 18Kb Slice Slice 18Kb
LUT6 Reg. BRAM LUT6 Reg. BRAM

Mont. Mul. (each) 2057 280 0 3651 545 0

xP−1P Pool 1639 559 24 2764 1091 45

Setup Modules 1148 548 0 2085 1078 0

Diff. Adder 237 74 0 257 74 0

(X,Y, Z) Recovery 134 58 0 1853 58 0

Group Addition 248 54 0 178 54 0

Modular Inverse 523 303 0 1112 568 0

Element Check 208 27 0 139 27 0

Memory Pool 7895 1604 8 13510 3196 15

Misc. Modules 1682 1795 0 1556 3392 0

Total 19885 5862 32 35037 11172 60

Table 4. Performance of Scalar Multiplications Q = 〈k〉P in various 3-core systems
on ZedBoardTM.

Elliptic Curve
S3,264 @ 45MHz S3,528 @ 32.26MHz
Cycles Time(ms) Cycles Time(ms)

NIST P224 92402 2.053 138041 4.279

NIST P256 105298 2.340 157273 4.875

SEC P256 k1 (BitCoin) 105298 2.340 157273 4.875

NIST P384 - - 233683 6.934

Brainpool P512 r1 - - 311129 9.644

NIST P521 - - 316538 9.812

Table 5. Resource Requirement of our 5-Montgomery-core system on ZC706 Kit. n in
S5,n implies the maximum n-bit compatibility design. No DSP slices are used.

Module

S5,264 S5,528
fmax = 83.33MHz fmax = 62.50MHz
Slice Slice 18Kb Slice Slice 18Kb

LUT6 Reg. BRAM LUT6 Reg. BRAM

Mont. Mul. (each) 2080 280 0 3455 545 0

xP−1P Pool 1635 559 40 3226 1096 75

Setup Modules 1079 548 0 1609 1078 0

Diff. Adder 247 103 0 1288 103 0

(X,Y, Z) Recovery 1395 76 0 1968 76 0

Group Addition 200 54 0 208 54 0

Modular Inverse 214 303 0 327 568 0

Element Check 137 27 0 162 27 0

Memory Pool 7662 2673 8 19554 5324 15

Misc. Modules 3973 1786 0 656 3412 0

Total 26941 7529 48 46269 14458 90

14 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

Table 6. Performance of Scalar Multiplications Q = 〈k〉P in various 5-core systems
on ZC706 Kit.

Elliptic Curve
S5,264 @ 83.33MHz S5,528 @ 62.50MHz
Cycles Time(ms) Cycles Time(ms)

NIST P224 95657 1.148 133085 2.129

NIST P256 109001 1.308 152429 2.439

SEC P256 k1 (BitCoin) 109001 1.308 152429 2.439

NIST P384 - - 226432 3.623

Brainpool P512 r1 - - 301421 4.823

NIST P521 - - 306659 4.907

[7]. The resource requirements and time performances of the 264-bit version and
the 528-bit version are given as Table 5 and Table 6.

Compared to 3-core systems, the cycles in our 5-core systems are not really
better. It is because that the MUX/deMUX mechanism of the memory pool
slows down all of the big integer operations, including the addition/subtraction.
Each big integer operation takes 3 cycles to fetch and 6 to save the big integers
(9 in total) in a 3-core system, but 5 and 10 (15 in total) in a 5-core system.
When the interface is implemented with MUX/deMUX, it should be concerned
that the cycles on the interfaces may make differences.

5.3 12-Montgomery-Core System

A 12-Montgomery-core system is implemented in our design to show the scal-
ability of customized number of cores. However, we found that we can only
implement a 12-core system with a maximum 264-bit size. 528-bit version can
be synthesized, but will face a routing procedure failure due to routes too con-
gested. The resource requirement and time performance of the 264-bit version is
shown in Table 7 and 8.

MUX/deMUX problem on the memory pool will be more severe in the 12-
core system, and a lot of Montgomery cores will be frequently useless during
the computation. It is not practical to implement a 12-core system as one ECC
engine.

5.4 3-Core vs 5-Core

Our ECC engine is designed as a custom IP to provide the hardware support of
the ARM processor in Zynq-7000. A reasonable idea for the hardware/software
co-design is to provide multiple ECC engines in the embedded system. We have
run the implementation process to test how many ECC engines with our design
can be put in the same system in ZC706 kit. The resource requirement of the
multi-ECC-engine system is shown in Table 9.

We may apply the throughput-resource ratio blocks/(s× kLUT) to evaluate
the effectiveness of the system we have built. The bigger the ratio is, the more

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 15

Table 7. Resource Requirement of our 12-Montgomery-core system S12,264 on ZC706
Kit. No DSP slices are used.

Module
S12,264, fmax = 45MHz

Slice LUT6 Slice Reg. 18Kb BRAM

Mont. Mul. (each) 2052 280 0

xP−1P Pool 1339 559 96

Setup Modules 1081 548 0

Diff. Adder 5132 165 0

(X,Y, Z) Recovery 1109 74 0

Group Addition 183 54 0

Modular Inverse 211 303 0

Element Check 138 27 0

Memory Pool 18162 6366 8

Misc. Modules 2362 1987 0

Total 54337 1344 104

Table 8. Performance of Scalar Multiplications Q = 〈k〉P in S12,264 with f = 45MHz
on ZC706 Kit.

Elliptic Curve Cycles Time(ms)

NIST P224 130513 2.900

NIST P256 148721 3.305

SEC P256 k1 (BitCoin) 148721 3.305

effective the system is. We can see the TRR of S3,528, S5,528, S3,264, S5,264, and
S12,264 are about 3.166, 2.472, 18.032, 11.825, and 4.800, respectively.

In a 5-core ECC engine there are sometimes some multipliers running dummy
operations, so we can see the throughput-resource ratio is much lower. It is more
effective to build 3-core engines in the system. Also we can see that a 12-core
engine system is not effective.

6 Conclusion and Future Works

In this work, we have shown the power and the limit of multiple big-integer
multiplication cores on the implementation of the Co-Z approach by Hutter et
al. in elliptic curve cryptography. It is suggested to design a 3-Montgomery-
core system to achieve the best performance, benchmarked as the throughput-
resource ratio. We have also shown that it is possible to build a fast Montgomery
ladder using the Co-Z approach with a 12-Montgomery-core system.

The system in our design can be improved in several ways. For the design of
the block memory restoring the large numbers, the MUX/deMUX approach may
be changed. The work by LaForest et al. [20–22] provides the solution saving the
clock cycles reading and writing data from or into the memory, with the cost
duplicated block memory modules being used. Also the design of the controller
can be improved. The total finite state machine which constructs the controller

16 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

Table 9. Resource requirement and effectiveness of scalar multiplication for multi-
ECC-engine systems on ZC706 Kit. f = 40MHz and NIST P521 curve applied for
Sn,528 and NIST P256 curve applied for Sn,264.

ECC Engine Count Average LUT Count System LUT Count blocks/(s× kLUT)

S3,528
7.913ms

2 37034 79634 3.174
3 37290 119904 3.162
4 38585 159788 3.163
5 Fail (routes too congested)

S5,528
7.666ms

2 46264 100979 2.583
3 51797 165830 2.360
4 Fail (more than 218600)

S3,264
2.632ms

2 19602 42462 17.895
3 19603 63389 17.981
4 19601 84359 18.015
5 19602 105323 18.037
6 19601 126277 18.053
7 19599 147247 18.062
8 19598 168170 18.074
9 19597 189087 18.084
10 19596 210083 18.085
11 Fail (more than 218600)

S5,264
2.725ms

2 26928 57150 12.842
3 29499 95063 11.581
4 26954 126859 11.571
5 26604 158640 11.566
6 26930 190417 11.563
7 Fail (more than 218600)

S12,264
3.718ms

2 54332 112070 4.7999
3 Fail (partial conflict)

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 17

is huge. Since the controller controls the input and the output flows for all of the
multipliers, it is possible to re-design the controller as several controllers, each
of which controls only one multiplier.

References

1. Neal Koblitz: Ellptic Curve Cryptosystems, Mathematics of Computation
48:177(1987), pp. 203-209.

2. Victor S. Miller: Use of Elliptic Curves in Cryptography, Crypto 1985, Lecture Notes
in Computer Science v. 218, pp. 417-426, Springer.

3. Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters,
Twisted Edwards Curves, Africacrypt 2008, Lecture Notes in Computer Science
v. 5023, pp. 389–405, Springer.

4. Peter L. Montgomery: Speeding the Pollard and elliptic curve methods of factoriza-
tion, Mathematics of Computation 48:177(1987), pp. 243-264.

5. Peter L. Montgomery: Modular Multiplication Without Trial Division, Mathematics
of Computation 44:170(1985), pp. 519-521.

6. Ian Land, Ryan Kenny, Lance Brown, and Rob Pelt, Shifting from Software to Hard-
ware for Network Security, White Paper, https://www.altera.com/content/dam/
altera-www/global/en US/pdfs/literature/wp/wp-01261-shifting-from-

software-to-hardware-for-network-security.pdf, February 2016, Altera.

7. Zynq-7000 All Programmable SoCs Product Tables and Product Selection
Guide, http://www.xilinx.com/support/documentation/selection-guides/

zynq-7000-product-selection-guide.pdf, 2015, Xilinx.

8. Michael Hutter, Marc Joye, Yannick Sierra: Memory-Constrained Implementations
of Elliptic Curve Cryptography in Co-Z Coordinate Representation, Africacrypt
2011, Lecture Notes in Computer Science v. 6737, pp. 170–187, Springer.

9. Henri Cohen, Atsuko Miyaji, Takatoshi Ono: Efficient Elliptic Curve Exponentia-
tion Using Mixed Coordinates, Asiacrypt 1998, Lecture Notes in Computer Science
v. 1514, pp. 51–65, Springer.

10. Paul C. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems, Crypto 1996, Lecture Notes in Computer Science v. 1109, pp.
104-113, Springer.

11. Jean-Sébastien Coron: Resistance Against Differential Power Analysis For Elliptic
Curve Cryptosystems, CHES 1999, Lecture Notes in Computer Science v. 1717,
pp. 292-302, Springer.

12. Sung-Ming Yen, Marc Joye: Checking before output may not be enough against
fault-based cryptanalysis, IEEE Trans. on Computers 49:9(2000). pp. 967-970.

13. Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina, Jean-
Luc Danger and Sylvain Guilley: Dismantling real-world ECC with Horizontal and
Vertical Template Attacks, COSADE 2016. Lecture Notes in Computer Science
v. 9689, pp. 88–108, Springer.

14. Daniel J. Bernstein, Tanja Lange: Explicit-Formulas Database,
https://hyperelliptic.org/EFD/

15. National Institute of Standards and Technology: Digital Signature Standard, FIPS
Publication 186-2, February 2000.

16. ECC Brainpool: ECC Brainpool standard curves and curve generation.,
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

18 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

17. Certicom Research: SEC 2: Recommended Elliptic Curve Domain Parameters.
2000.

18. Yu-Kwong Kwok, Ishfaq Ahmad: Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors, J. ACM CSUR 31:4(1999), pp. 406–471.

19. Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, Nele Mentens: Low Power
Montgomery Modular Multiplication on Reconfigurable Systems, Cryptology ePrint
Archive 2016/280.

20. Charles Eric LaForest, J. Gregory Steffan: Efficient multi-ported memories for FP-
GAs, Proc. ACM(SIGDA) FPGA 2010, pp. 41-50.

21. Charles Eric Laforest, Ming G. Liu, Emma Rae Rapati, J. Gregory Steffan: Multi-
ported memories for FPGAs via XOR, Proc. ACM(SIGDA) FPGA 2012, pp. 209-
218.

22. Charles Eric Laforest, Zimo Li, Tristan O’rourke, Ming G. Liu, J. Gregory Stef-
fan: Composing Multi-Ported Memories on FPGAs, J. ACM Trans. Reconfig. Tech-
nol. Syst., 7:3(2014), Article 16.

23. Samuel Neves, Mehdi Tibouchi: Degenerate Curve Attacks, PKC 2016, Lecture
Notes in Computer Science v. 9615, pp. 19–35.

A Appendices

A.1 Critical Paths for Recovery of (X′
1, Y

′
1 , Z

′)

The task schedule graph of Algorithm 6 is shown in Figure 5(a), and the graph
with ADD/SUB omitted is given in Figure 5(b).

(a) (b)

Fig. 5. The task schedule graph of Algorithm 6.

Observing in Figure 5(b), we can find the critical path of Algorithm 6 with
respect to big-integer multiplication is 〈11→ 12→ 13→ 16〉, and the length is
4. Recalling that 10M+ 3S are required (13 in total), if Algorithm 6 is adopted
to perform formula (5), it may be efficient to construct a 2-Montgomery-core, a
3-Montgomery-core, and a 4-Montgomery-core schedule.

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 19

(a) (b)

Fig. 6. The task schedule graph with step 12 and 13 modified in Algorithm 6.

R11 ← T 2
P

R12 ← X1 ×R11

R13 ← xP ×R12

R14 ← yP + yP
R15 ← R14 +R14

X ′1 ← R15 ×R13

R11 ← T 2
P

R′12 ← X1 × xP
R′13 ← R11 ×R′12
R14 ← yP + yP
R15 ← R14 +R14

X ′1 ← R15 ×R′13

It does not seem to be so efficient to construct a 5-Montgomery-core sched-
ule, but actually the critical path can be further reduced. The related steps in
Algorithm 6 are used to evaluate X ′1 = 4yPxPT

2
PX1. Observing that neither

xPX1 nor X1T
2
P will be used in other steps, the schedule of getting the result of

xPT
2
PX1 can be rearranged. We will get the product xPX1 first and then mul-

tiply T 2
P with xPX1. The resulting task schedule graph is shown Figure 6(b), in

which all critical paths have length 3. The 5-Montgomery-core schedule can be
now created directly from Figure 6(b).

The 2-core and 3-core schedules for Algorithm 6 are shown as Algorithm 9
and 10, respectively. We can see that the 2-core schedule takes 7 rounds, while
the 3-core, 5 rounds.

Now let’s consider the task schedule graph, as shown in Figure 7(a) and 7(b),
of Algorithm 5. The critical paths are of length 3 with respect to big-integer
multiplications, so it is clear that the 2-Montgomery-core, the 3-Montgomery-
core, and the 5-Montgomery-core schedules takes about 6, 5, and 3 rounds of
big-integer multiplications, respectively. Because only step 1, 7, 15 (3 in total)
can be performed in the first round, and there are still 9 multiplications to be
performed after the first round, we can see that the 4-Montgomery-core schedule
takes 4 rounds of big-integer multiplications.

An additional note is that when it is the case that a and 4b are constants, a
2-Montgomery-core system can perform Algorithm 5 with one round fewer than
original case. This fact makes it more competitive than Algorithm 6.

20 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

(a) (b)

Fig. 7. The task schedule graph of Algorithm 5.

A.2 Design Detail for Montgomery Multipliers

Montgomery multiplication with reduction method [5] is given by Algorithm 2.

Algorithm 2: Montgomery multiplication with Reduction algorithm.

Input: A = an−1d
n−1 + ...a1d+ a0, B = bn−1d

n−1 + ...b1d+ b0,
P = pn−1d

n−1 + ...p1d+ p0, d, where gcd(P, d) = 1
Output: C = cn−1d

n−1 + ...c1d+ c0
1 p′ ← −p−10 mod d
2 C0 ← 0
3 for i = 0 to n− 1 do
4 Li ← Ci + aiB
5 qi ← Li mod d

6 Ci+1 ← Li+qip
′P

d

7 end
8 if Cn ≥ P then C ← Cn − P else C ← Cn

9 return C

Two (lg d)× (lgP)-bit and one (lg d)× (lg d)-bit multiplication is used in this
algorithm. There are a lot of works (e.g. [19] by Massolino et al. as the latest work
as we know) to repeatedly utilize a (lg d) × (lg d)-bit multiplier to construct a
(lg d)×(lgP)-bit multiplier, but in this work we build one (lg d)×(lgP) directly.
It may be slow to build such a multiplier due to long critical paths and large
delay, but the optimized multiplier size may not be fitted with the DSP slices
only, but with the delay of other modules in the system. The best choice is to
build a multiplier with similar delay compared to delays of other parts in the
system. It is a good further research to do.

We do not use the DSP slices as they may be used for other purposes, es-
pecially multimedia. Another consideration not to use DSP slices is that we are
going to build systems with a lot of Montgomery cores. With a (lg d)× (lgP)-bit
multiplier where lgP is large (at most 528 in our work), we may run out of

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 21

DSP slices very quickly when building a many-Montgomery-core system (espe-
cially the 12-core system in this work). Since DSP slices are not used, the base
d applied in the algorithm cannot be large.

The (lg d)× (lgP)-bit multiplier is utilized twice in Algorithm 2, but we can
observe that in the case qip

′ × P , the only varying parameter is qi. Since d is
small, it may be a good idea to build a table saving all of the possible qip

′P
values. Such a table will cancel half of the utilization of the (lg d) × (lgP)-bit
multiplier, saving either half of the clock cycles or resources to build another
(lg d) × (lgP)-bit multiplier. In our work, the base d is selected as 28, and we
have built a table with 256 entries to save all of the possible qip

′P values.

A.3 Algorithms

Algorithm 3: One-core addition-and-doubling algorithm in homogeneous
projective co-Z coordinate - variant 1, for fixed ECC parameters. [8]

Input: X1, X2, Z, xP , a, 4b
Output: X ′1, X ′2, Z ′

1 R1 ← Z2

2 R2 ← a×R1

3 R3 ← Z ×R1

4 R4 ← 4b×R3

5 R5 ← X2
2

6 R6 ← R5 −R2

7 R7 ← R2
6

8 R8 ← R5 +R2

9 R9 ← X2 ×R8

10 R10 ← R9 +R9

11 R11 ← R10 +R10

12 R12 ← R11 +R4

13 R13 ← R8 +R2

14 R14 ← X2
1

15 R15 ← R13 +R14

16 R16 ← X1 −X2

17 R17 ← X2 +X2

18 R18 ← R17 ×R4

19 R19 ← R7 −R18

20 R20 ← R2
16

21 R21 ← R15 −R20

22 R22 ← R16 +R17

23 R23 ← R22 ×R21

24 R24 ← R23 +R4

25 R25 ← Z ×R20

26 R26 ← xP ×R25

27 R27 ← R24 −R26

28 X ′1 ← R27 ×R12

29 X ′2 ← R20 ×R19

30 Z ′ ← R25 ×R12

31 return (X ′1, X
′
2, Z

′)

Algorithm 4: One-core addition-and-doubling algorithm in homogeneous
projective co-Z coordinate - variant 2, optimized version for dynamic ECC
parameters. [8]

Input: X1, X2, TP = xPZ, Ta = aZ2, Tb = 4bZ3

Output: X ′1, X ′2, T ′P , T ′a, T ′b
1 R1 ← X1 −X2

2 R2 ← R2
1

3 R3 ← X2
2

4 R4 ← R3 − Ta
5 R5 ← R2

4

6 R6 ← X2 +X2

7 R7 ← R6 × Tb
8 R8 ← R5 −R7

9 R9 ← R6 +R6

10 R10 ← R3 + Ta

11 R11 ← R9 ×R10

12 R12 ← R11 + Tb
13 R13 ← X1 +X2

14 R14 ← R10 + Ta
15 R15 ← R14 −R2

16 R16 ← X2
1

17 R17 ← R15 +R16

18 R18 ← R13 ×R17

19 R19 ← R18 + Tb
20 R20 ← R12 ×R19

21 X ′2 ← R2 ×R8

22 R22 ← R2 ×R12

23 R23 ← R22 × Tb
24 R24 ← R2

22

25 T ′P ← TP ×R22

26 T ′a ← Ta ×R24

27 T ′b ← R23 ×R24

28 X ′1 ← R20 − T ′P
29 return

(X ′1, X
′
2, T

′
P , T

′
a, T

′
b)

22 B.Y. Peng, Y.C. Hsu, Y.J. Chen, D.C. Chueh, C.M. Cheng, B.Y. Yang

Algorithm 5: One-core (X,Y, Z)-recovery algorithm in homogeneous pro-
jective co-Z coordinate - variant 1, for fixed ECC parameters. [8]

Input: X1, X2, Z, xP , yP , a, 4b
Output: X ′1, Y ′1 , Z ′

1 R1 ← xP × Z
2 R2 ← X1 −R1

3 R3 ← R2
2

4 R4 ← R3 ×X2

5 R5 ← R1 ×X1

6 R6 ← X1 +R1

7 R7 ← Z2

8 R8 ← a×R7

9 R9 ← R5 +R8

10 R10 ← R6 ×R9

11 R11 ← R10 −R4

12 R12 ← R11 +R11

13 R13 ← yP + yP
14 R14 ← R13 +R13

15 R15 ← R14 ×X1

16 X ′1 ← R15 ×R7

17 R17 ← R7 × Z
18 Z ′ ← R17 ×R14

19 R19 ← 4b×R17

20 Y ′1 ← R19 +R12

21 return (X ′1, Y
′
1 , Z

′)

Algorithm 6: One-core (X,Y, Z)-recovery algorithm in homogeneous pro-
jective co-Z coordinate - variant 2, optimized for dynamic ECC parameters.
[8]

Input: X1, X2, TP = xPZ, Ta = aZ2, Tb = 4bZ3, xP , yP
Output: X ′1, Y ′1 , Z ′

1 R1 ← TP ×X1

2 R2 ← R1 + Ta
3 R3 ← X1 + TP
4 R4 ← R2 ×R3

5 R5 ← X1 − TP
6 R6 ← R2

5

7 R7 ← R6 ×X2

8 R8 ← R4 −R7

9 R9 ← R8 +R8

10 R10 ← R9 + Tb
11 R11 ← T 2

P

12 R12 ← X1 ×R11

13 R13 ← xP ×R12

14 R14 ← yP + yP
15 R15 ← R14 +R14

16 X ′1 ← R15 ×R13

17 R17 ← R11 × TP
18 Z ′ ← R15 ×R17

19 R19 ← x2P
20 R20 ← R19 × xP
21 Y ′1 ← R20 ×R10

22 return (X ′1, Y
′
1 , Z

′)

Algorithm 7: Two-core addition-and-doubling algorithm in homogeneous
projective co-Z coordinate, optimized for dynamic ECC parameters.

Input: X1, X2, TP = xPZ, Ta = aZ2, Tb = 4bZ3

Output: X ′1, X ′2, T ′P , T ′a, T ′b
1 R3 ← X2

2 ; R2 ← X2
1

2 R1 ← X1 −X2; R4 ← R3 − Ta
3 R1 ← R2

1; R4 ← R2
4

4 R5 ← X2 +X2; R3 ← R3 + Ta
5 X ′2 ← R5 +R5; X ′1 ← X1 +X2

6 X ′2 ← R5 × Tb; R5 ← X ′2 ×R3

7 X ′2 ← R4 −X ′2; R4 ← R5 + Tb
8 X ′2 ← R1 ×X ′2; R5 ← R1 ×R4

9 R3 ← R3 + Ta; R2 ← R2 −R1

10 R3 ← R3 +R2

11 R2 ← R5 × Tb; R1 ← R2
5

12 T ′P ← TP ×R5

13 X ′1 ← X ′1 ×R3; T ′a ← Ta ×R1

14 X ′1 ← X ′1 + Tb
15 X ′1 ← R4 ×X ′1; T ′b ← R2 ×R1

16 X ′1 ← X ′1 − T ′P
17 return (X ′1, X

′
2, T

′
P , T

′
a, T

′
b)

MC FPGA Implementation of ECC with Homogeneous Co-Z Representation 23

Algorithm 8: Three-core addition-and-doubling algorithm in homoge-
neous projective co-Z coordinate, optimized for dynamic ECC parameters.

Input: X1, X2, TP = xPZ, Ta = aZ2, Tb = 4bZ3

Output: X ′1, X ′2, T ′P , T ′a, T ′b
1 R0 ← X1 −X2; R1 ← X2 +X2

2 R2 ← R2
0; R0 ← X2

2 ; R3 ← Tb ×R1

3 R0 ← R0 − Ta; R1 ← R1 +R1; R4 ← R0 + Ta
4 R0 ← R2

0; R5 ← R1 ×R4; R1 ← X2
1

5 R3 ← R0 −R3; R1 ← R4 + Ta; R4 ← R1 −R2

6 R0 ← R5 + Tb; R1 ← X1 +X2; R4 ← R1 +R4

7 R2 ← R1 ×R4; X ′2 ← R2 ×R3; R3 ← R2 ×R0

8 R2 ← R2 + Tb
9 R2 ← R0 ×R2; R1 ← R3 × Tb; R4 ← R2

3

10 T ′P ← TP ×R3; T ′a ← Ta ×R4; T ′b ← R1 ×R4

11 X ′1 ← R2 − T ′P
12 return (X ′1, X

′
2, T

′
P , T

′
a, T

′
b)

Algorithm 9: Two-core (X,Y, Z)-recovery algorithm in homogeneous pro-
jective co-Z coordinate, optimized for dynamic ECC parameters.

Input: X1, X2, TP = xPZ, Ta = aZ2, Tb = 4bZ3, xP , yP
Output: X ′1, Y ′1 , Z ′

1 R2 ← X1 − TP
2 R1 ← TP ×X1; R2 ← R2

2

3 R1 ← R1 + Ta; R3 ← X1 + TP
4 R1 ← R1 ×R3; R2 ← R2 ×X2

5 R1 ← R1 −R2

6 R2 ← T 2
P ; Y ′1 ← x2P

7 X ′1 ← X1 ×R2; Z ′ ← R2 × TP

8 X ′1 ← xP ×X ′1; Y ′1 ← Y ′1 × xP
9 R1 ← R1 +R1; R2 ← yP + yP

10 R1 ← R1 + Tb; R2 ← R2 +R2

11 X ′1 ← X ′1 ×R2; Z ′ ← R2 × Z ′
12 Y ′1 ← R1 × Y ′1
13 return (X ′1, Y

′
1 , Z

′)

Algorithm 10: Three-core (X,Y, Z)-recovery algorithm in homogeneous
projective co-Z coordinate, optimized for dynamic ECC parameters.

Input: X1, X2, TP = xPZ, Ta = aZ2, Tb = 4bZ3, xP , yP
Output: X ′1, Y ′1 , Z ′

1 R0 ← X1 − TP
2 R1 ← R2

0; R2 ← TP ×X1

3 R0 ← X1 + TP ; R2 ← R2 + Ta
4 R0 ← R1 ×X2; R2 ← R2 ×R0; R1 ← TP × TP
5 R2 ← R2 −R0

6 R0 ← xP × xP ; R4 ← X1 ×R1; R3 ← R1 × TP
7 R1 ← R0 × xP ; R4 ← R4 × xP
8 R0 ← R2 +R2; R2 ← yP + yP
9 R0 ← R0 + Tb; R2 ← R2 +R2

10 Y ′1 ← R1 ×R0; X ′1 ← R2 ×R4; Z ′ ← R2 ×R3

11 return (X ′1, Y
′
1 , Z

′)

