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1. COUPLED BAND MODEL FOR QUANTUM SIZE LEVELS IN SPHERICAL

NANOCRYSTALS

In cubic phase metal halide perovskites (MHPs), the conduction and valence band edges

are located at the R-point of the first Brilluoin zone[1], for which the point symmetry group

is Oh[2, 11]. We first develop a model for the confined conduction and valence band levels of a
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MHP nanocrystal in terms of the multiband k·P theory developed for spherical nanocrystals

[4, 5].

In the MHPs, the band edge states of the lowest conduction band transforms as a state

with p orbital symmetry with total angular momentum J = 1/2: The conduction band edge

states |1/2,±1/2〉c, given by [2],

|1/2, 1/2〉c =
−1√

3
[(|X〉+ i|Y 〉) | ↓〉+ |Z〉| ↑〉]

|1/2,−1/2〉c =
1√
3

[− (|X〉 − i|Y 〉) | ↑〉+ |Z〉| ↓〉] . (1)

The valence band edge states can be represented as the J = 1/2 states with s orbital

symmetry, which we write |1/2,±1/2〉v, given by [2]:

|1/2, 1/2〉v = |S〉| ↑〉 , |1/2,−1/2〉v = |S〉| ↓〉 , (2)

In these expressions the spinor functions | ↑〉 and | ↓〉 are the eigenfunctions of the electron

spin projection operator sz = ±1/2.

Given the point symmetry Oh we can approximate the conduction and valence band

eigenstate in spherical NCs as eigenstates of total angular momentum F and its projection

Fz,[4]. It is therefore convenient to represent these states in a total angular momentum basis

written as follows:

|F, Fz〉 =
∑
L

RL,F (r) |F, Fz; J, L〉. (3)

Here, the RL,F are radial envelope functions and the angular basis functions |F, Fz; J, L〉 are

constructed as [4],

|F, Fz; J, L〉 =
J∑

Jz=−J

L∑
Lz=−L

〈J, Jz;L,Lz|F, Fz〉 |J, Jz〉 |L,Lz〉. (4)

The first term in the sum above is a Clebsch-Gordan coefficient; the states |J, Jz〉 are band

edge Bloch functions with J = 1/2, and |L,Lz〉 are envelope functions which have coordinate

representations given by spherical harmonics.

Using this basis we express the effective mass Hamiltonian for flat band conditions in a

free spherical wave basis of eigenstates of total angular momentum. The appropriate basis

functions inside the NC are the spherical waves which are regular at the origin[4]:

|k, F, Fz; J, L〉 =

√
2

π
iLjL(kr)|F, Fz; J, L〉 (5)
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where jL(kr) is a spherical Bessel function with wavenumber k. In this basis the Hamiltonian

is block diagonal in F, Fz and parity. [4] For bound states, outside the NC the appropriate

basis functions take the form of spherical Hankel functions of the first kind, which we denote

at hL, which decay with increasing radius for imaginary wavenumber k = iλ[4]:

|k, F, Fz; J, L〉 =

√
2

π
iLhL(kr)|F, Fz; J, L〉 (6)

A. Kang Wise model

A four band model for the coupled conduction-valence band system is given in a Bloch

plane-wave basis in Ref [2]. This Hamiltonian is equivalent to the one developed in the

spherical approximation for lead chalcogenide NCs by Kang and Wise in Ref. [5]. Applying

a unitary basis transformation, this Hamiltonian can be rewritten in the spherical wave

basis, Eq. 4 [4]; in this form the Hamiltonian is block-diagonal in total angular momentum

F, Fz and parity. We consider only the lowest energy conduction and valence band states,

which correspond to total angular momentum F = 1/2. We use the notation |J,L〉 to denote

our basis with the quantum numbers F = 1/2 and Fz = ±1/2 in |F,Fz; J,L〉 understood and

therefore omitted. In this basis the Hamiltonian within the subspace of the lowest angular

momentum F = 1/2 states for odd (even) parity is given by,

H
0(1)
1/2,±1/2 =


|1/2, 0(1)〉c |1/2, 1(0)〉v

|1/2, 0(1)〉c Ec + γc
~2k2
2m0

−i ~
m0

√
1
3
Pk

|1/2, 1(0)〉v i ~
m0

√
1
3
Pk Ev − γv ~

2k2

2m0

 , (7)

where γe and γh are dimensionless parameters that represent the contribution of remote

bands to the effective mass of the electrons and holes, respectively, m0 is the free electron

mass and the matrix element P = −i〈S|P̂ |Z〉 is the Kane momentum matrix element,

related to the Kane energy by Ep = 2|P |2/m0. In all the expressions mo denotes the free

electron mass. We diagonalize this matrix to obtain the nonparabolic two-band dispersion

relation

(Ac − E)(Av − E) =
1

3

~2

m2
0

P 2k2 =
Ep
3

~2

2m0

k2 (8)

In this expression the terms Ac(v) are defined by,

Ac(k) = Ec + γc
~2k2

2m0

, Av(k) = Ev − γv
~2k2

2m0

, (9)
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Because Eq 8 is quartic in k, there are therefore two solutions for k2 for a given energy. We

note that one of the two solutions corresponds to a pure imaginary solution for all energies;

we denote the solutions as k2
1 = k2 (real solution for E > Ec or E < Ev) and k2

2 = −λ2

(imaginary solution). In this case the QD eigenstates are found by superposing the two bulk

radial wave states associated with wavenumbers k2
1,2 that are regular at the origin. For the

conduction states with F = 1/2, the general form can thus be written [4],

ψ(r) = A

 jl(kr)

Θc(E, k) j|1−l|(kr)

+B

 jl(iλr)

Θc(E, iλ) j|1−l|(iλr)

 (10)

where using l = 0 corresponds to the S-like ground state while l = 1 corresponds to the

excited P-like states. The functions Θc(E, k) involved in the bulk radial waves are given by,

Θc(E,K) = −i ~
m0

√
1

3
Pk

1

Av(k)− E
(11)

It is convenient to express the Kane matrix element P in terms of the Kane energy Ep =

2P 2/mo:

P =

√
m0Ep

2
(12)

Using this we can re-write the Θ function as,

Θc(E, k) = −i
√

1

3

√
~2Ep
2m0

k

Av(k)− E
(13)

The requirement that the wavefunction vanish at the NC surface r = R leads to the disper-

sion relation [5],

jl(kR) j|1−l|(iλR)

j|1−l|(kR) jl(iλR)
=

Θc(E, k)

Θc(E, iλ)
= −ik

λ

(Av(iλ)− E)

(Av(k)− E)
(14)

Equations ( 8), and ( 14) form a system of three equations in the three unknowns, E, k, and

λ. In the limit that the parameters γc → 0 and γv =→ 0, the parameter λ goes to the limit,

λ→ 1

γc,v

√
2m0

~2

Ep
3
→∞ (15)

In this limit,

lim
λ→∞

j1(iλR)

j0(iλR)
= +i (16)
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Additionally, in this limit,

lim
λ→∞

λ

Av(λ)− E
=

2m0

~2

1

γc,vλ
=

√
2m0

~2

√
3

Ep
(17)

Thus, the eigenvalues for the case γc,v →∞ are found by solving the equation,

jl(kR)

j|1−l|(kR)
= (−1)l+1

√
~2

2m0

√
Ep
3

k

(Ev − E)
(18)

A parallel analysis for the valence states can be made using,

ψ(r) = A

Θv(E, k) j|1−l|(kr)

jl(kr)

+B

Θv(E, iλ) j|1−l|(iλr)

jl(iλr)

 (19)

where using l = 0 corresponds to the S-like ground valence band quantum size level state

while again l = 1 corresponds to the excited P-like envelope states. Here,

Θv(E, k) = +i

√
1

3

√
~2Ep
2m0

k

Ac(k)− E
(20)

This leads to the eigenvalue equation for those states as,

jl(kR) j|1−l|(iλR)

j|1−l|(kR) jl(iλR)
=

Θv(E, k)

Θv(E, iλ)
= −ik

λ

(Ac(iλ)− E)

(Ac(k)− E)
(21)

When γc → 0 and γv =→ 0, this has the limit,

jl(kR)

j|1−l|(kR)
= (−1)l+2

√
~2

2m0

√
Ep
3

k

Ec − E
(22)

The sign change relative to Eq. 18 follows since,

λ

Ac(iλ)− E
=

λ

Ec − E − (~2/2m0)γvλ2
(23)

and since as γv → 0, λ→ (1/γv)
√

(2m0/~2)Ep/3, it follows that,

lim
γv→0

λ

Ac(iλ)− E
= −

√
3

Ep

2m0

~2
(24)

It is seen that the confinement energies of the valence and conduction band states relative

to their respective band edges are equal.
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B. Kane model

The four band model for the coupled conduction-valence band system given in Ref [2] in

general contains terms on the diagonal that are quadratic in the wave-vector, and therefore

can give rise to non-physical “wing-band” states of imaginary wave-vector for non-zero γc,

γv. As a check we therefore implement a Kane-type model [6] inwhich these quadratic terms

are neglected from the outset and the NC is treated as a heterostructure with finite band

offset [4]. To check the result previously derived we will then take the limit of the resulting

expressions in the limit of infinite band offset /barrier height.

We use the notation |J,L〉 to denote our basis with the quantum numbers F = 1/2 and

Fz = ±1/2 in |F,Fz; J,L〉 for the lowest energy states understood and therefore omitted.

In this basis the Kane Hamiltonian within the subspace of the lowest angular momentum

states for odd (even) parity is given by,

H
0(1)
1/2,±1/2 =


|1/2, 0(1)〉c |1/2, 1(0)〉v

|1/2, 0(1)〉c Ec −i ~
m0

√
1
3
Pk

|1/2, 1(0)〉v i ~
m0

√
1
3
Pk Ev

 (25)

We diagonalize this matrix to obtain the nonparabolic two-band dispersion relation

(Ec − E)(Ev − E) =
1

3

~2

m2
0

P 2k2 =
Ep
3

~2

2m0

k2 (26)

where we used the definition of the Kane energy, Ep = 2P 2/m0.

We illustrate the solution for the nanocrystal for the case of conduction band states. The

eigenfunctions for the conduction band states with F = 1/2 are found as follows: We form

the Hamiltonian peice-wise with bandstructure constants EI
c, EI

v within the nanocrystal and

EO
c , EO

v exterior to it. Eigenvectors of the 2 × 2 Hamiltonian are computed interior and

exterior to the quantum dot. We require that the wavefunction be regular at the origin.

The boundary condition that the wavefunction be continuous across the interface is applied

to arrive at a relation between spherical wave numbers inside and outside. This condition is

combined with the energy dispersion relations to determine the eigenvalues of the quantum

dot. The energy dispersion relations follow from Eq.( 26) and are given by the expressions

(EI
c − E)(EI

v − E) =
Ep
3

~2

2m0

k2

(EO
c − E)(EO

v − E) = −Ep
3

~2

2m0

λ2, (27)
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where the exterior spherical wavenumber has been taken as iλ in anticipation of solving for

bound energy eigenstates. Eigenvectors resulting from the diagonalization process have the

same general form as described above. For the conduction band states we form:

|ψE〉 = A {|1/2, l〉+ Θc(E, k) |3/2, |1− l|〉 } (28)

where l = 0, 1 depending on the parity of the conduction band envelope and where “A” is

a constant to be determined by matching boundary conditions and applying normalization.

The function Θc is,

Θc(E, k) = −i ~
m0

√
1

3
Pk

1

(Ev − E)
(29)

The angular and Bloch space elements of Eq.( 28) are assumed to be the same inside and

outside the dot, so this vector is projected onto only the envelope space radial coordinate

representation. This results in a 2-dimensional column vector representation for the quantum

dot state inside and outside the dot given by,

ψin(r) = A

 jl(kinr)

Θc(E, k) j|1−l|(kinr)

 , ψout(r) = B

 hl(koutr)

Θc(E, iλ) h|1−l|(koutr)

 , (30)

Note that outside the quantum dot, only the spherical Hankel function of imaginary argu-

ment which decays for large r is retained. Applying continuity of the resulting envelope

states at the boundary of the quantum dot and r = R leads to the following condition:

jl(kR) h|1−l|(iλR)

j|1−l|(kR) hl(iλR)
=

Θc(E, k)

Θc(E, iλ)
=

k

iλ

(Eo
v − E)

(Ein
v − E)

(31)

which is very similar, but not identical, to what we had obtained in the Kang-Wise solution.

Equations ( 27), and ( 32) form a system of three equations in the three unknowns, E, k, and

λ. In the limit as the barrier heights goes to∞, Eo
v → −EB → −∞ and Eo

c → +EB → +∞

so that, using Eq 27, we find

λ

Ev − E
→ −

√
3

Ep

2m0

~2

In addition, in this case, λ→∞ so that,

h1(iλR)

h0(iλR)
→ −i

Thus, the eigenvalues are found by solving the equation,

jl(kR)

j|1−l|(kR)
= (−1)l+1

√
Ep
3

~2

2m0

k

(Ein
v − E)

(32)

This is exactly the same equation as produced in the Kang Wise model in the limit that

γc = γv → 0.



8

2. QUASI-CUBIC MODEL FOR BLOCH FUNCTIONS FOR TETRAGONAL

AND ORTHORHOMBIC LATTICE SYMMETRY

We begin our analysis of the band edge Bloch functions with cubic phase perovskite,

point group Oh. As previously noted, the band edges in the cubic phase are located at the

R-point of the first Brillouin zone [1]. Since we will be considering the electronic structure

of the orthorhombic phase we are free to visualize the electronic structure in a non-primitive

supercell coincident with the orthorhombic primitive cell, that is, instead of referencing the

primitive cubic cell of lattice constant a0 aligned to the cubic symmetry axes, we reference

a non-primitive cell spanned by vectors a, b, c of dimensions
√

2a0 :
√

2a0 : 2a0 where the

vectors a, and b are rotated by 45o to the cubic phase x,y axes while the vector c is aligned

to the cubic phase z axis and twice the length of the primitive vector. With reference to

this non-primitive cell, the conduction and valence band edges are mapped onto the Γ point,

that is, the center of the first Brillouin zone.

It is conceptually simplest to start the analysis considering the electronic structure ne-

glecting spin-orbit coupling. In this case the band edge Bloch functions for the valence band

are given by,

uv = S (33)

while the conduction band Bloch functions are given by

ucx = X , ucy = Y , ucz = Z . (34)

In the equations above, S and X, Y, Z are the orbital Bloch functions for the s-type and p-

type band edge symmetry, respectively. In this basis we consider the effect of the distortion

of the unit cell carrying the structure from the cubic phase to the tetragonal or orthorhombic

phase. The effect of these distortions is to change the lattice constants with respect to the

cubic phase. We can parameterize the departure from the cubic phase lattice constants in

terms of a strain whose principle axes coincide with the orthorhombic cell and model the

effect on the conduction band edge states using a deformation potential model. As shown

in the main text, the strain deformation Hamiltonian is constructed using the theory of

invariants as,

H̃d = Ud
(
exxL

2
x + eyyL

2
y + ezzL

2
z − 2/3(exx + eyy + ezz)I

)
(35)

where Ud is a deformation potential, eii are the components of the strain tensor with i running

over x, y, z, taken parallel to the orthorhombic cell edges; while Lx,y,z are the matrixes
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representing the x, y and z projections of angular momentum l = 1. Together with I, the

3x3 unit matrix, the Lx,y,z serve as base matrices for the deformation potential Hamiltonian

for the P-like conduction band with no spin orbit coupling. Here we are only interested in

the splitting caused within the conduction band manifold and have separated out the volume

dilatation term. Following the main text, we introduce the tetragonal, δ, and orthorhombic,

ζ crystal field parameters as follows:

δ ≡ Ud

(
εzz −

εxx + εyy
2

)
, ζ ≡ Ud

εxx − εyy
2

. (36)

We next add spin and spin-orbit coupling into the analysis. The spin-orbit coupling can be

written as:

ĤSO =
2

3
∆soL · S (37)

where L is the orbital angular momentum and S is the spin. In the absence of any deforma-

tion from cubic symmetry, the Bloch functions which diagonalize the SO interaction can be

represented as the eigenstates of total angular momentum J = L+S. We therefore change

basis to a basis of total angular momentum states. For the valence band edge, these are the

even parity states of angular momentum J = 1/2, which we write uv1/2,±1/2, given by [2]:

uv1/2,1/2 = S ↑ , uv1/2,−1/2 = S ↓ , (38)

where the spinor functions ↑ and ↓ are the eigenfunctions of the electron spin projection

operator sz = ±1/2. The spin orbit interaction splits the conduction band into lower,

band edge, states with angular momentum J = 1/2, and upper states with J = 3/2. The

conduction band edge Bloch functions uc1/2,±1/2 are given by [2],

u1/2,1/2 =
−1√

3
[(X + iY ) ↓ +Z ↑] , u1/2,−1/2 =

1√
3

[− (X − iY ) ↑ +Z ↓] . (39)

while for the upper states with J = 3/2 the Bloch functions, u3/2,µ (µ = ±3/2,±1/2) are,

u3/2,3/2 = − 1√
2

(X + iY ) ↑ , u3/2,−3/2 =
1√
2

(X − iY ) ↓ ,

u3/2,1/2 =
1√
6

[− (X + iY ) ↓ +2Z ↑] , u3/2,−1/2 =
1√
6

[(X − iY ) ↑ +2Z ↓] . (40)

In this basis, taken in the order,

|3/2, 3/2〉, |3/2, 1/2〉, |3/2,−1/2〉, |3/2, 13/2〉, |1/2, 1/2〉, |1/2,−1/2〉,
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the conduction band Hamiltonian Ĥ = ĤSO + Ĥd is given by,

Ĥ(δ, ζ) =



1
3
∆SO + δ

3
0 ζ√

3
0 0 −

√
2
3
ζ

0 1
3
∆SO − δ

3
0 ζ√

3

√
2δ
3

0

ζ√
3

0 1
3
∆SO − δ

3
0 0 −

√
2δ
3

0 ζ√
3

0 1
3
∆SO + δ

3

√
2
3
ζ 0

0
√

2δ
3

0
√

2
3
ζ −2

3
∆SO 0

−
√

2
3
ζ 0 −

√
2δ
3

0 0 −2
3
∆SO


(41)

Let us now consider specific symmetries.

A. Tetragonal distortion

For the lattice structure with tetragonal symmetry, the crystal field parameter ζ = 0 and

the conduction band Hamiltonian H̃ assumes the simpler form,

Ĥ(δ, 0) =



δ
3

+ 1
3
∆SO 0 0 0 0 0

0 1
3
∆SO − δ

3
0 0

√
2δ
3

0

0 0 1
3
∆SO − δ

3
0 0 −

√
2δ
3

0 0 0 δ
3

+ 1
3
∆SO 0 0

0
√

2δ
3

0 0 −2
3
∆SO 0

0 0 −
√

2δ
3

0 0 −2
3
∆SO


(42)

This Hamiltonian can be diagonalized giving the following energies: The upper 4-fold degen-

erate conduction band splits into two 2-fold degenerate bands which we label, in analogy to

the valence bands in III-V semiconductors, as heavy-electrons (he) with J = 3/2, Jz = ±3/2,

and light-electrons (le) with J = 3/2, Jz = ±1/2, while the lower spin-orbit split off band

has J = 1/2, Jz = ±1/2, and is labeled c for the conduction band. The energies of these

bands are,[7, 9, 10],

Ele = −∆so + δ

6
+

1

2

√
∆2
so −

2

3
∆so δ + δ2; (Jz = ±1

2
)

Ehe =
∆so + δ

3
; (Jz = ±3

2
)

Ec = −∆so + δ

6
− 1

2

√
∆2
so −

2

3
∆so δ + δ2; (Jz = ±1

2
). (43)
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The corresponding eigenstates, which can be represented as eigenstates of the projection of

total angular momentum along the c-axis, taken to be along z are written for the upper

bands as:

utetle,1/2 = − sin θ
(X + iY )√

2
↓ + cos θZ ↑ , utetle,−1/2 = sin θ

(X − iY )√
2

↑ + cos θZ ↓ ,

utethe,3/2 = − 1√
2

(X + iY ) ↑ , utethe,−3/2 =
1√
2

(X − iY ) ↓ (44)

while the lowest conduction band has eigenstates,

utetc,1/2 = − sin θZ ↑ − cos θ
X + iY√

2
↓

utetc,−1/2 = − cos θ
X − iY√

2
↑ + sin θZ ↓ (45)
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(a)

(b)

 
so

 tet(!)

FIG. 1. Band edge/zone center conduction band energies plotted versus tetragonal crystal field δ,

panel (a); and versus orthorhombic crystal field, ζ, in panel (b). Panel (a) is calculated using Eq.

43. In the figure the spin orbit splitting ∆SO is taken as 1.5 eV and is labelled in the panel; it is

the difference in energy between the upper J = 3/2 and the lower J = 1/2 conduction bands at

zero distortion. The band energies are plotted relative to the energy centroid of the 6 conduction

bands. One can see the tetragonal splitting ∆tet(δ) is described in Eq. 47, which is the splitting

between the “he” Jz = ±3/2 bands and “le” Jz = ±1/2 bands. Panel (b) shows the split band edge

energies plotted versus orthorhombic crystal field ζ. Calculations were conducted for tetragonal

crystal fields δ = 0 and δ = 200 meV shown by solid and dashed lines, respectively.

In these expressions the angle θ is given by[8, 9],

tan 2θ =
2
√

2∆SO

∆SO − 3δ
, (0 ≤ θ ≤ π

2
) . (46)
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This follows straightforwardly from the identity,

tan 2θ =
2 tan θ

1− tan2 θ

using,

tan θ =
3δ −∆so + 3

√
∆2
so − 2

3
∆so δ + δ2

2
√

2∆so

.

Within this model, the tetragonal crystal field, δ, splits the J = 3/2 conduction band states

by an amount,[7, 9, 10]

∆tet = Ehe − Ele =
∆ + δ

2
− 1

2

√
∆2
so −

2

3
∆so δ + δ2. (47)

At small δ, i.e., δ � ∆, this is approximately, ∆tet ≈ 2
3
δ; if the crystal field is positive, the

“heavy electron” with Jz = ±3/2 is shifted upwards in energy with respect to the “light

electron” with Jz = ±1/2. This is shown in Figure 1, panel (a). It is important to recognize

that this analysis assumes that the upper J = 3/2 conduction band splitting is determined

entirely by the interactions among the 6 conduction bands serving as a basis within the

model. As described in Ref. 11, calculation of the band structure within DFT shows that

this assumption is not valid. The upper J = 3/2 conduction band edges, which derive from

the R-point of the Brillouin zone in the cubic phase, are close in energy to states derived

from the X-point of cubic Brilluoin zone; coupling between the J = 3/2 states and the

X-derived conduction band states enhances the upper conduction band splitting beyond the

result given in Eq. 47, calculated within the 6-band quasi-cubic model outlined here.

B. Orthorhombic distortion

Eq. 41 gives the conduction band edge structure in the presence of simultaneous tetrago-

nal and orthorhombic distortions. A full analytical treatment is complicated by the fact that

the energies are cubic functions of the orthorhombic crystal field, ζ, and that the angular

momentum about the c-axis is no longer a good quantum number. However, as shown by

Fu et al. in Ref. 7, a simple analytical analysis of the effect of the orthorhombic distortion

on the lowest conduction band basis functions and energies can be made for the case that

the orthorhombic crystal field is small with respect to the spin orbit coupling, ζ � ∆SO.

To see this, it is useful to transform Eq. 41 from the total angular momentum basis of Eqs.
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39-40 to the basis given in Eq. 44-45 for the tetragonally distorted system. In this case,

Ĥ(θ, ζ) =



Ehe 0 ζ sin θ 0 0 −ζ cos θ

0 Ele 0 ζ sin θ 0 0

ζ sin θ 0 Ele 0 0 0

0 ζ sin θ 0 Ehe ζ cos θ 0

0 0 0 ζ cos θ Ec 0

−ζ cos θ 0 0 0 0 Ec


. (48)

In this expression, the energies on the diagonal are given in Eq. 43. Neglecting ζ sin θ in

Eq. (48) terms we neglect the coupling induced by the orthorhombic crystal field within

the upper conduction band manifold. At the same time we keep the first order corrections

to energies and basis functions of the lowest conduction band, resulting in the approximate

Hamiltonian,

Ĥ(θ, ζ)≈



Ehe 0 0 0 0 −ζ cos θ

0 Ele 0 0 0 0

0 0 Ele 0 0 0

0 0 0 Ehe ζ cos θ 0

0 0 0 ζ cos θ Ec 0

−ζ cos θ 0 0 0 0 Ec


. (49)

In this approximation the energy Ele is unchanged, while the lowest conduction band

couples with the Jz = ±3/2 band, Ehe. The lower coupled branch, which corresponds to the

conduction band edge of interest, has energy,

Ec(ζ) ≈ Ec + Ehe
2

− 1

2

√
(Ehe − Ec)2 + 4ζ2 cos2 θ . (50)

Figure 2 compares the band edge energy found using approximate Eq. (50) with the energy

determined by direct daiagonalizing the full Hamiltonian, Eq.41. Differences in the energy

are less than 3 meV up to crystal field values of 500 meV as shown in panel (b) of the figure.

The band edge Bloch function of NCs with orthorhombic crystal structure found in the

first order perturbation theory can be written,

uorthc1 ≈ − cosφ sin θZ ↑ +
(sinφ− cosφ cos θ)X − i(sinφ+ cosφ cos θ)Y√

2
↓

uorthc2 ≈ (sinφ− cosφ cos θ)X + i(sinφ+ cosφ cos θY√
2

↑ + cosφ sin θZ ↓ . (51)
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(a)

(b)

FIG. 2. Comparison of the dependence of the lowest conduction band edge on orthorhombic

crystal field ζ calculated by diagonalizing the full Hamiltonian Eq. 41 (solid lines) and in first

order perturbation theory using Eq. 50 (dashed lines). Calculations were conducted using spin

orbit splitting ∆SO = 1.5 eV, for tetragonal crystal field δ = 0 meV, shown with black and red

dashed lines in panel (a), and δ = +200 meV shown with solid blue and orange dashed lines on

panel (a). As in Fig 1 the zero of energy in the plot is the centroid of all six conduction bands

(originating from J = 3/2 and J = 1/2). Panel (b) shows the difference in energy between the

solution found in the first order perturbation theory (denoted Efo), versus the energy E found by

diagonalization of the full Hamiltonian, Eq. 41. In panel (b) the solid red lines corresponds to

δ = 0meV while the blue dashed line corresponds to δ = +200meV.

Here, the phase angle, φ, is determined by the spin orbit coupling, ∆SO and the tetrag-

onal and orthorhombic crystal fields, δ and ζ. In the first order perturbation theory φ is
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(a)                                                    (b)

(c)                                                 (d)

FIG. 3. The dependence of the reduced oscillator transition strengths f̃X , f̃Y and f̃Z and their

averages for band edge transitions in NCs with tetragonal panel (a), and in NCs with orthorhombic

crystal structure, panels (b)-(d), on the crystal field parameters. The oscillator strength is fXi =

f0f̃Xi where f0 ≈ Ep/Eg is given in Eq. 54. The spin-orbit coupling in all these plots is taken

as ∆so = 1.5eV. The dependences of the oscillator transition strength on δ shown in panel (a)

were calculated for ζ = 0. In panels (b), (c) and (d) the oscillator transition strengths is shown

as a function of orthorhombic crystal field ζ for zero tetragonal crystal fields δ = 0, (b); δ =

200 meV,(c); and δ = 400 meV, (d). Solid lines show the results of numerical diagonalization of

the “exact” or full Hamiltonian, Eq.41, while dashed lines show the results calculated in the first

order perturbation theory using Eq.51. The difference between the first-order result and the result

of the full calculation is negligible if |ζ| < 100 meV; at |ζ| ∼ 250 meV the error in the z-oscillator

strength is < 4%. The polarization average in all panels is 2/3 which is an exact result.

determined as follows:

tan 2φ =
2ζ cos θ

Ec − Ehe
=

−4ζ cos θ

∆SO + δ +
√

∆2
SO − 2

3
∆SOδ + δ2

. (52)

Equation (52) was derived using the identity,tan 2φ = 2 tanφ/(1− tan2 φ), where

tanφ =
2ζ cos θ

Ec − Ehe −
√

(Ec − Ehe)2 + 4ζ2 cos2 θ
. (53)
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As noted in the main text, in the case of cubic symmetry, δ = 0, ζ = 0 so that tan 2θ = 2
√

2

or θ = 35.26o and φ = 0. In that case, the conduction band Bloch functions can be

represented as the odd-parity eigenstates of total angular momentum J with J = 1/2 and

c1, c2 revert to the form given in Eq. 39 for perovskite with cubic symmetry. Likewise

if δ 6= 0, ζ = 0 these expressions transfer to Eq. 45 for the lowest conduction bands in

perovskite tetragonal symmetry of the crystal structure.

To quantify the validity of the approximation culminating in the first order expression

for the conduction band-edge Bloch functions, Eq.51, we calculated the transition dipole

matrix elements using these expressions and compared them with those calculated using

the full Hamiltonian, Eq. 41 or equivalently Eq. 48. In the tetragonal and orthorhom-

bic perovskites, it is clear that the transition dipole matrix elements will be different for

the x, y, and z directions. To compare them, it is convenient to calculate the total os-

cillator strength for the 4 degenerate band-edge transitions, doing so for each x, y, and z

polarization components which respectively involve the matrix elements of the p̂x, p̂y, and

p̂z momentum operators. We express these matrix elements via the Kane matrix element,

|P | = |〈S|p̂x|X〉| = |〈S|p̂y|Y 〉| = |〈S|p̂z|Z〉|. Using the definition of oscillator strength for

the optical transition between k and m states, fk,m = 2P 2
k,m/(m0~ω), where Pk,m is the

matrix element of the momentum operator taken between states k and m, and ~ω is the

energy difference between these two states, we can write the oscillator strength for the three

band edge transition into Xi = X, Y, Z states with mutually orthogonal dipoles,

fXi
=

2P 2

m0~ω
f̃Xi
≡ f0f̃Xi

(54)

where f0 ≈ Ep/Eg is the magnitude of the oscillator strength, where Ep = 2P 2/m0 is

the Kane energy and the energy gap Eg ≈ ~ω. The reduced oscillator transition strength

f̃Xi
= f̃Xi

(δ, ζ) contains all of the polarization information and are defined as follows:

f̃Xi
=

1

P 2

{
|〈uv1|p̂i|uc1〉|2 + |〈uv1|p̂i|uc2〉|2 + |〈uv2|p̂i|uc1〉|2 + |〈uv2|p̂i|uc2〉|2

}
. (55)

Using Eq. 38 for the valence band functions uv1, uv2 and Eq.51 for the conduction band

functions uc1, uc2, the results for the 3 directions are given by,

f̃X = (sinφ− cos θ cosφ)2 ,

f̃Y = (sinφ+ cos θ cosφ)2, ,

f̃Z = 2 cos2 φ sin2 θ , (56)
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resulting in average of the reduced oscillator over the three polarization directions: f̃ave =

(f̃X + f̃Y + f̃Z)/3 = 2/3. Importantly, regardless of the crystal field parameters δ and ζ or

equivalently the phase angles θ and φ, the direction-averaged reduced oscillator strength is

conserved and equal to its value in the cubic lattice structure.

While we have shown that f̃ave = 2/3 explicitly using the first-order expressions for the

orthorhombic crystal field, the same result can be obtain from the exact solution of Eq. 41.

The polarization-average of the reduced oscillator strength is the same whether computed

for the J = 1/2 lowest conduction band or either of the the upper J = 3/2 conduction bands.

As a result any admixture between the bands caused by the crystal field splitting preserves

the polarization average. Figure 3 shows the reduced oscillator strengths f̃Xi
for X, Y , and

Z dipoles as well as their average. Figure 3 shows the result of numerical diagonalization

of the full quasi-cubic Hamiltonian, Eq. 41, as well as the results obtained in the first

order perturbation theory described by Eq.51. Panel (a) shows the results for the tetragonal

phase as a function of tetragonal crystal field δ. The spin-orbit coupling in all these plots

is taken as 1.5eV. For the crystal having tetragonal symmetry, φ = 0 and Eq.51 is exact

within the limitations of the quasi-cubic model. Panel (b), (c) and (d) show the reduced

oscillator strengths calculated for the orthorhombic phase versus orthorhombic crystal field ζ

for zero tetragonal crystal field, δ = 0, panel (b); tetragonal crystal field δ = 200 meV, panel

(c); and tetragonal crystal field δ = 400 meV, panel(d). The solid lines in panels (b)-(d)

show the exact results while the dashed lines show the results of the first-order perturbation

theory. The difference between the latest one and the exact calculation is negligible up to

an orthorhombic crystal field of ∼ ±100 meV while the error grows with increasing ζ. The

largest error is in the z-polarization term, reaching 3.7% error for orthorhombic crystal field

of |ζ| ∼ 250 meV with δ = 0 meV.

3. DENSITY FUNCTIONAL THEORY CALCULATIONS

Our first-principles calculations of CsPbBr3 and CsPbI3 are based on hybrid density

functional theory[12, 13] (DFT) as implemented in the VASP code[14]. These calculations

employed projector augmented waves [15] and plane-wave cutoffs of 500 eV, together with

spin-orbit coupling (SOC). For the Pb pseudopotentials, semicore 5d states were included as

valence electrons. k-point meshes of 8× 8× 8 were used for the cubic phase, and equivalent
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TABLE 1. Calculated normalized lattice parameters (in Å) and direct band gaps (in eV) of

CsPbBr3, as determined from hybrid DFT calculations. Experimental lattice parameters from

Ref.16 are included in parentheses.

phase a (Å) b (Å) c (Å) direct band gap (eV)

cubic – – 5.95 (5.87) 1.75

tetragonal – 5.84 (5.84) 6.04 (5.90) 2.18

orthorhombic 5.81 (5.80) 5.87 (5.84) 5.99 (5.88) 2.14

density meshes were employed for the tetragonal phase and orthorhombic phases.

The amount of exact exchange within the hybrid functional was set to 0.35, and a range

separation parameter was set to 0.1 Å−1 for all calculations. This approach allowed for quan-

titative accuracy of band structure calculations and momentum matrix elements without ex-

cessive computational expense. Perovskite structures for the experimental cubic, tetragonal,

and orthorhombic phase of CsPbBr3 were adopted after the experimental measurements in

Ref. 16, and all lattice parameters and atomic positions were subsequently relaxed to ensure

self-consistency.

These hybrid functional calculations yielded normalized lattice parameters that are in

good agreement with experiment (see Table 1) [16]. The minimum direct band gaps cal-

culated for the tetragonal and orthorhombic phases are in good agreement with the 2.2-2.4

eV gaps that have been reported experimentally [16, 17], while the calculated band gap of

the cubic phase (1.75 eV) is somewhat smaller.

We also calculated “mimic” FAPbBr3 and MAPbI3 structures, in which the organic

cations were replaced by Cs to preserve the inversion symmetry of the experimental struc-

tures, an approach taken in Ref. 1 in calculating the properties of tetragonal MAPbI3.

The Cs atoms in these structures were explicitly placed at the high-symmetry sites which

were nearest to the center of the organic cations. The mimic FAPbBr3 structures consist

of CsPbBr3 in a tetragonal structure with lattice constants and Pb and Br ion positions

matching the experimental FAPbBr3 P4/mbm structure reported in Ref. 18, and in an

orthorhombic structure matching the Pnma structure in Ref. 20. Similarly, the mimic

MAPbI3 structures are comprised of CsPbI3 structures with lattice parameters and Pb

and I atom positions matching the experimental measurements of Refs. 19 and 21 for the
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tetragonal ( I4/mcm) and orthorhombic (Pnma) modifications, respectively, again with the

replacement of the organic cation by Cs to preserve the inversion symmetry of the experi-

mental structure. For these mimic structures the atomic positions were not relaxed prior to

calculation of the band structure and band edge wavefunctions.

A. Calculation of short-range exchange

The short-range (SR) exchange interaction can be written as a contact interaction in a

form similar to Eq. 29 in the main part of the paper. The exchange Hamiltonian is a matrix

operator given by [22, 23]:

HSR,eh
m′,n′;m,n(re; rh) = +V Um′,Tn;Tn′,mδ(re − rh) (57)

This expression represents the short-range interaction, roughly localized to the unit cell level,

between electron-hole pair state m′, n′ and pair state m,n, where m and n refer respectively

to conduction and valance band edge states. Within the formula, V = NΩ is the crystal

volume comprising N unit cells of volume Ω, and T is the time-reversal operator. For direct

band gap system with conduction and valence bands m, n, respectively, the exchange matrix

element in the expression is given by

Um′,Tn;Tn′,m =
1

V 2

∫
V

d3r1

∫
V

d3r2 u
∗
m′(r1)[Tun(r2)]∗U(r1, r2)Tun′(r1)um(r2). (58)

In the last expression, U(r1, r2) represents the Coulomb interaction between electrons at

positions r1 and r2, with account of screening associated with core electrons, and the integrals

are taken over the entire crystal volume V . The functions um(r) are the band-edge Bloch

functions; for a consistent normalization these functions are normalized over the unit cell of

volume Ω according to[23]
1

Ω

∫
Ω

d3r u∗m(r)um(r) ≡ 1 (59)

Since the exchange interaction, Eq. 57 and the exchange integral in Eq. 58 depend explicitly

on the crystal volume V, it is desirable to re-write the exchange interaction in terms of a

unit cell exchange constant of the form,

HSR,eh
m′,n′;m,n(re; rh) = +ΩU cell

m′,Tn;Tn′,mδ(re − rh). (60)
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In Eq. 60 then U cell
m′,Tn;Tn′,m ≡ 1/N Um′,Tn;Tn′,m, where N = V/Ω is the number of unit cells

in the crystal. To clarify the volume scaling and range of the short-range exchange it is infor-

mative to express the Coulomb potential U(r1, r2) in 58 in terms of its Fourier transform. It

has been shown that the dielectric function should be considered as a range-dependent func-

tion with the short-range electron-hole exchange interaction being essentially unscreened,

while long range interactions are screened by the high frequency dielectric constant [24].

Writing the Coulomb interaction with a short-range dielectric εSR ∼ 1 assumed constant,

U(r1, r2) =
e2

εSR|r1 − r2|
=
∑
q

U(q) eiq·(r1−r2) (61)

the Fourier coefficients are given by,

U(q) =
1

V

∫
V

d3rU(r)e−iq·r =
1

V

4πe2

εSRq2
(62)

Substituting this into the equation for the unit cell exchange integral, we have,

U cell
m′,Tn;Tn′,m =

V

Ω

1

V 2

∑
q

4πe2

V εSRq2

∫
V

d3r1u
∗
m′(r1)eiq·r1Tun′(r1)

∫
V

d3r2e
−iq·r2 [Tun(r2)]∗um(r2)

(63)

The last equation shows that the exchange integral involves a sum of over the product of

the Fourier transforms of the pair Bloch functions Tun, um. Defining these as follows,

ATn,m(G) ≡ 1

V

∫
V

d3r[Tun(r)]∗um(r)e−iG·r, (64)

we note that ATn,m(G = 0) = 0 because of the orthogonality of the Bloch functions um, un

and we retain only the analytic terms in the sum, by which we mean the terms in the sum

with G 6= 0, giving the result [25]:

U cell
m′,Tn;Tn′,m =

1

Ω

∑
G 6=0

4πe2

εSRG2
[ATn′,m′(G)]†ATn,m(G). (65)

Here we have replaced the sum over q with a sum over reciprocal lattice vectors G 6= 0

reflecting the fact that the functions um, un are periodic in the lattice. There are in addition

non-analytical terms corresponding to G = 0 which comprise the long range exchange[22,

23, 25] which are treated separately following the procedure given in the main text.

It is convenient to write the SR exchange operator in matrix form,

H̃SR(re; rh) = +ΩŨ cellδ(re − rh) . (66)
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where the matrix Ũ cell has matrix elements comprising exchange integrals U cell
m′,Tn;Tn′,m given

by Eq. 65 in terms of the Fourier transforms of the pair Bloch functions Tun, um given in

Eq. 64. These can be calculated directly using the Bloch functions from DFT, which were

extracted from VASP output using the WaveTrans program.[26] To determine the exchange

constant CSR, the resulting matrix Ũ cell is then used in Eq. 66 and the exchange Hamiltonian

for the band edge exciton is found by averaging over the exciton wavefunctions, described

by Eq. 31 from the main text. The result is,

H̃SR = Ũ cellΩ
x

V

d3red
3rhf

∗(re, rh)δ(re − rh)f(re, rh)

= Ũ cellΩ

∫
V

d3r|f(r, r)|2 ≡ Ũ cellΘ , (67)

where Θ is the overlap factor developed in the main text in the discussion of the SR exchange

interaction. Diagonalizing this matrix we compute the energies of the ground singlet and

the upper triplet excitons. We average the difference in energy between the singlet, UsΘ,

and the 3 triplet exciton energies, Ut,iΘ where i runs over the 3 triplet states, to find,

∆ESR
st = ∆USR

st Θ =

{∑3
i=1 Ut,i

3
− Us

}
Θ . (68)

Since the average singlet-triplet splitting energy is given by the relation, ∆ESR
st = 2/3CSRΘ,

which is derived in k · P theory and has been verified using the DFT wavefunctions, the

exchange constant CSR is given by,

CSR = 3/2 ∆USR
st . (69)
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