1,685 research outputs found

    A silicon-labelled amino acid suitable for late-stage fluorination and unexpected oxidative cleavage reactions in the preparation of a key intermediate in the Strecker synthesis

    Get PDF
    A novel silicon-substituted phenylalanine derivative was prepared using the Strecker amino acid synthesis. An unexpected oxidative cleavage was observed in the preparation of the aldehyde required for the Strecker reaction. In this step, a homobenzylic alcohol intermediate was oxidatively cleaved to the corresponding benzaldehyde using either chromium or palladium based oxidants. This undesired side reaction was overcome through the use of Dess-Martin Periodinane, or through an efficient TEMPO-bleach oxidation. The amino acid prepared in this study was then labelled with fluoride in aqueous solvent using a range of fluoride sources. The efficiency of this labelling motivates future studies in late-stage fluorination of peptide and protein therapeutics for use in positron emission tomography

    Norbornene Probes for the Detection of Cysteine Sulfenic Acid in Cells.

    Get PDF
    Norbornene derivatives were validated as probes for cysteine sulfenic acid on proteins and in live cells. Trapping sulfenic acids with norbornene probes is highly selective and revealed a different reactivity profile than the traditional dimedone reagent. The norbornene probe also revealed a superior chemoselectivity when compared to a commonly used dimedone probe. Together, these results advance the study of cysteine oxidation in biological systems

    Bioorthogonal Strategy for Bioprocessing of Specific-Site-Functionalized Enveloped Influenza-Virus-Like Particles

    Get PDF
    Virus-like particles (VLPs) constitute a promising platform in vaccine development and targeted drug delivery. To date, most applications use simple nonenveloped VLPs as human papillomavirus or hepatitis B vaccines, even though the envelope is known to be critical to retain the native protein folding and biological function. Here, we present tagged enveloped VLPs (TagE-VLPs) as a valuable strategy for the downstream processing and monitoring of the in vivo production of specific-site-functionalized enveloped influenza VLPs. This two-step procedure allows bioorthogonal functionalization of azide-tagged nascent influenza type A hemagglutinin proteins in the envelope of VLPs through a strain-promoted [3 + 2] alkyne-azide cycloaddition reaction. Importantly, labeling does not influence VLP production and allows for construction of functionalized VLPs without deleterious effects on their biological function. Refined discrimination and separation between VLP and baculovirus, the major impurity of the process, is achieved when this technique is combined with flow cytometry analysis, as demonstrated by atomic force microscopy. TagE-VLPs is a versatile tool broadly applicable to the production, monitoring, and purification of functionalized enveloped VLPs for vaccine design trial runs, targeted drug delivery, and molecular imaging.The authors acknowledge funding from the European Union (EDUFLUVAC project FP7-HEALTH-2013-INNOVATION), the Fundação para a Ciência e Tecnologia (FCT, Portugal; project HIVERA/0002/2013 and FCT Investigator to G.J.L.B.), EPSRC (to G.J.L.B.), the European Commission, Marie Skłodowska-Curie Actions (MSCA), and RISE project grant 644167. S. B. C., J. M. F., F. M., and D. G. acknowledge FCT for fellowships SFRH/BD/52302/2013, SFRH/BD/70423/2010, SFRH/BD/70139/2010, and SFRH/BPD/73500/2010, respectively. The authors acknowledge Ricardo Silva for all his help in fluorescence analysis implementation and fruitful discussions. The authors also acknowledge Patrícia Gomes-Alves for her help for mass spectrometry analysis. Mass spectrometry data was obtained by the Mass Spectrometry Unit (UniMS), ITQB/iBET, Oeiras, Portugal. G. J. L. B. is a Royal Society University Research Fellow and the recipient of a European Research Council Starting Grant (TagIt)

    Results of Primary Angioplasty in a Reference Center: in-Hospital Outcomes

    Get PDF
    INTRODUCTION: Primary angioplasty is accepted as the preferred treatment for acute myocardial infarction in the first 12 hours. However, outcomes depend to a large extent on the volume of activity and experience of the center. Continuous monitoring of methods and results obtained is therefore crucial to quality control. OBJECTIVE: To describe the demographic, clinical and angiographic characteristics as well as in-hospital outcomes of patients undergoing primary PCI in a high-volume Portuguese center. We also aimed to identify variables associated with in-hospital mortality in this population. METHODS: This was a retrospective registry of consecutive primary PCIs performed at Santa Marta Hospital between January 2001 and August 2007. Demographic, clinical, and angiographic characteristics and in-hospital outcomes were analyzed. Independent predictors of in-hospital mortality were identified by multivariate logistic regression analysis. RESULTS: A total of 1157 patients were identified, mean age 61+/-12 years, 76% male. Mean pain-to-balloon time was 7.6 hours and primary angiographic success was 88%. Overall in-hospital mortality was 6.9%, or 5.5% if patients presenting in cardiogenic shock were excluded from the analysis. Previous history of heart failure, cardiogenic shock on admission, invasive ventilatory support, major hemorrhage, and age over 75 years were found to be associated with increased risk of in-hospital death. Conclusions: In this center primary PCI is effective and safe. Angiographic success rates and in-hospital mortality and morbidity are similar to other international registries. Patients at increased risk for adverse outcome can be identified by simple clinical characteristics such as advanced age, cardiogenic shock on admission, mechanical ventilation and major hemorrhage during hospitalization

    Tactical Voting in Plurality Elections

    Get PDF
    How often will elections end in landslides? What is the probability for a head-to-head race? Analyzing ballot results from several large countries rather anomalous and yet unexplained distributions have been observed. We identify tactical voting as the driving ingredient for the anomalies and introduce a model to study its effect on plurality elections, characterized by the relative strength of the feedback from polls and the pairwise interaction between individuals in the society. With this model it becomes possible to explain the polarization of votes between two candidates, understand the small margin of victories frequently observed for different elections, and analyze the polls' impact in American, Canadian, and Brazilian ballots. Moreover, the model reproduces, quantitatively, the distribution of votes obtained in the Brazilian mayor elections with two, three, and four candidates.Comment: 7 pages, 4 figure

    Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation.

    Get PDF
    Brain injury elicits a systemic acute-phase response (APR), which is responsible for co-ordinating the peripheral immunological response to injury. To date, the mechanisms responsible for signalling the presence of injury or disease to selectively activate responses in distant organs were unclear. Circulating endogenous extracellular vesicles (EVs) are increased after brain injury and have the potential to carry targeted injury signals around the body. Here, we examined the potential of EVs, isolated from rats after focal inflammatory brain lesions using IL-1β, to activate a systemic APR in recipient naïve rats, as well as the behavioural consequences of EV transfer. Focal brain lesions increased EV release, and, following isolation and transfer, the EVs were sequestered by the liver where they initiated an APR. Transfer of blood-borne EVs from brain-injured animals was also enough to suppress exploratory behaviours in recipient naïve animals. EVs derived from brain endothelial cell cultures treated with IL-1β also activated an APR and altered behaviour in recipient animals. These experiments reveal that inflammation-induced circulating EVs derived from endothelial cells are able to initiate the APR to brain injury and are sufficient to generate the associated sickness behaviours, and are the first demonstration that EVs are capable of modifying behavioural responses

    The use of fluoroproline in MUC1 antigen enables efficient detection of antibodies in patients with prostate cancer

    Get PDF
    A structure-based design of a new gene22ration tumor-associated glycopeptides with improved affinity against two anti-MUC1 antibodies is described. These unique antigens feature a fluorinated proline residue, such as a (4S)-4-fluoro-L-proline or 4,4-difluoroproline, at the most immunogenic domain. Binding assays using bio-layer interferometry reveal 3-fold to 10-fold affinity improvement with respect to the natural (glyco)peptides. According to X-ray crystallography and MD simulations, the fluorinated residues stabilize the antigen-antibody complex by enhancing key CH/ interactions. Interestingly, a notable improvement in detection of cancer-associated anti-MUC1 antibodies from serum of patients with prostate cancer is achieved with the non-natural antigens, which proves that these derivatives can be considered better diagnostic tools than the natural antigen for this type of cancer.We thank the Ministerio de Economía y Competitividad (projects CTQ2015-67727-R, UNLR13-4E-1931, CTQ2013-44367-C2-2-P, CTQ2015-64597-C2-1P, and BFU2016-75633-P). I. A. B. thanks the Asociación Española Contra el Cancer en La Rioja for a grant. I. S. A. and G. J. L. B. thank FCT Portugal (PhD studentship and FCT Investigator, respectively) and the EPSRC for funding. G. J. L. B. holds a Royal Society URF and an ERC StG (TagIt). F.C. and G. J. L. B thank the EU (Marie-Sklodowska Curie ITN, Protein Conjugates). R.H-G. thanks Agencia Aragonesa para la Investigación y Desarrollo (ARAID) and the Diputación General de Aragón (DGA, B89) for financial support. The research leading to these results has also received funding from the FP7 (2007-2013) under BioStruct-X (grant agreement N°283570 and BIOSTRUCTX_5186). We thank synchrotron radiation source DIAMOND (Oxford) and beamline I04 (number of experiment mx10121-19). Hokkaido University group acknowledges to JSPS KAKENHI Grant Number 25220206 and JSPS Wakate B KAKENHI Grant Number 24710242. We also thank CESGA (Santiago de Compostela) for computer support

    Effects of PI and PIII Snake Venom Haemorrhagic Metalloproteinases on the Microvasculature: A Confocal Microscopy Study on the Mouse Cremaster Muscle

    Get PDF
    The precise mechanisms by which Snake Venom Metalloproteinases (SVMPs) disrupt the microvasculature and cause haemorrhage have not been completely elucidated, and novel in vivo models are needed. In the present study, we compared the effects induced by BaP1, a PI SVMP isolated from Bothrops asper venom, and CsH1, a PIII SVMP from Crotalus simus venom, on cremaster muscle microvasculature by topical application of the toxins on isolated tissue (i.e., ex vivo model), and by intra-scrotal administration of the toxins (i.e., in vivo model). The whole tissue was fixed and immunostained to visualize the three components of blood vessels by confocal microscopy. In the ex vivo model, BaP1 was able to degrade type IV collagen and laminin from the BM of microvessels. Moreover, both SVMPs degraded type IV collagen from the BM in capillaries to a higher extent than in PCV and arterioles. CsH1 had a stronger effect on type IV collagen than BaP1. In the in vivo model, the effect of BaP1 on type IV collagen was widespread to the BM of arterioles and PCV. On the other hand, BaP1 was able to disrupt the endothelial barrier in PCV and to increase vascular permeability. Moreover, this toxin increased the size of gaps between pericytes in PCV and created new gaps between smooth muscle cells in arterioles in ex vivo conditions. These effects were not observed in the case of CsH1. In conclusion, our findings demonstrate that both SVMPs degrade type IV collagen from the BM in capillaries in vivo. Moreover, while the action of CsH1 is more directed to the BM of microvessels, the effects of BaP1 are widespread to other microvascular components. This study provides new insights in the mechanism of haemorrhage and other pathological effects induced by these toxins

    Site-selective protein-modification chemistry for basic biology and drug development.

    Get PDF
    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.We thank FCT Portugal (FCT Investigator to G.J.L.B.), the EU (Marie-Curie CIG to G.J.L.B. and Marie-Curie IEF to O.B.) and the EPSRC for funding. G.J.L.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.239
    corecore