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†Instituto de Tecnologia Química e Bioloǵica Antońio Xavier, Universidade Nova de Lisboa, Avenida da Repub́lica, 2780-157 Oeiras,
Portugal
§iBET, Instituto de Biologia Experimental e Tecnoloǵica, Apartado 12, 2780-901 Oeiras, Portugal
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ABSTRACT: Virus-like particles (VLPs) constitute a promising platform in vaccine development and targeted drug delivery. To
date, most applications use simple nonenveloped VLPs as human papillomavirus or hepatitis B vaccines, even though the
envelope is known to be critical to retain the native protein folding and biological function. Here, we present tagged enveloped
VLPs (TagE-VLPs) as a valuable strategy for the downstream processing and monitoring of the in vivo production of specific-
site-functionalized enveloped influenza VLPs. This two-step procedure allows bioorthogonal functionalization of azide-tagged
nascent influenza type A hemagglutinin proteins in the envelope of VLPs through a strain-promoted [3 + 2] alkyne−azide
cycloaddition reaction. Importantly, labeling does not influence VLP production and allows for construction of functionalized
VLPs without deleterious effects on their biological function. Refined discrimination and separation between VLP and
baculovirus, the major impurity of the process, is achieved when this technique is combined with flow cytometry analysis, as
demonstrated by atomic force microscopy. TagE-VLPs is a versatile tool broadly applicable to the production, monitoring, and
purification of functionalized enveloped VLPs for vaccine design trial runs, targeted drug delivery, and molecular imaging.

Virus-like particles (VLPs) hold great promise as a platform
for the development of long-lasting vaccine candidates,

i.e., more-effective vaccines that do not require constant
updates.1 Vaccines with improved clinical activities that use
recombinant VLPs as their antigens have been developed,2−4

namely against hepatitis B as well as human papillomavirus
viruses.1,5 Moreover, engineered VLPs carry additional promise
for the generation of a wide range of nanoscale carriers in
targeted drug delivery and molecular imaging.6 Previous studies
have also shown VLPs to be a safe and efficient platform to
deliver active proteins to cells.7 Additionally, genetically

engineered VLPs have been exploited as drug-delivery systems
for the targeted delivery of cytotoxic agents to tumors.8,9

The versatility of VLP platforms has prompted development
of strategies to functionalize them. In contrast with genetic
methods, chemical-based approaches for the production of
modified VLPs are experimentally simpler, more efficient, less
time-consuming, and more cost-effective. In one report, surface
modification of adenovirus vectors was achieved by metabolic
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Figure 1. Site-specific in vivo labeling of enveloped influenza VLPs. (a) Schematic representation of the procedure to metabolically introduce an
azide-tagged noncanonical amino acid Aha for subsequent strain-promoted alkyne−azide [3 + 2] cycloaddition (SPAAC) labeling. During cellular
protein synthesis, the Aha added to the culture medium is incorporated into nascent HA proteins. Addition of the Alexa 488-cyclooctyne reagent
allows site-specific modification of HA (fluorescent tag in our case), which is reflected in VLP production. The modified HAs are incorporated into
the vesicles’ envelope that is secreted from the cells that carry the chemical modification with it. (b) Confocal microscopy analysis of chemically
modified VLP with the fluorescent probe Alexa 488. Dilutions (100-fold) of bulk VLPs (107 particles mL−1) were deposited onto IbiTreat 8 μ well
slides. Multicolor fluorescent beads (500 nm) were used as size and green signal references (converted to grayscale). Red signal was also acquired
(converted to grayscale), and from green−red merge images 500 nm beads can be discriminated from VLPs (yellow and green dots, respectively). In
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incorporation of azidohomoalanine (Aha) followed by a
copper(I)-catalyzed alkyne−azide cycloaddition reaction.10

Alternatively, Francis and co-workers produced synthetic MS2
viral capsids functionalized with antibodies by using a oxidative
coupling strategy.11 However, to date, the production of
synthetically modified VLPs has been limited to simple
nonenveloped VLPs. Complex enveloped VLPs show potential
as platforms for the presentation of membrane proteins. The
envelope is thus essential to maintaining the proteins in their
folded and biologically functional state, which is critical to
vaccine efficacy.12 There are clinical trials that report efficacy
and safety improvements only after the incorporation of
membrane proteins on the VLP surface, which induces a more-
specific antibody response.13 Enveloped VLPs have the
potential to generate antibodies of high diagnostic and
therapeutic relevance to target transporters, ion channels, and
membrane proteins present in the human genome that lack
inhibitory antibodies because of current technical limitations.14

The potential of enveloped VLP platforms as vaccine
candidates and drug carriers, together with the strict constraints
of regulatory agencies for higher quality and safety control of
biopharmaceuticals, highlights the need for new downstream
processing methods for the production of functionalized
enveloped VLPs.
Herein, we present a bioorthogonal labeling strategy that

enables us to successfully functionalize complex enveloped
influenza VLPs within live cells. The approach reported here,
termed as tagged enveloped VLPs (TagE-VLPs) is composed of
four key components: (i) residue-specific replacement of
methionine (Met) by Aha15,16 to access azide-tagged precursor
enveloped influenza VLPs, (ii) Aha-specific modification by
strain-promoted alkyne−azide [3 + 2] cycloaddition (SPAAC)
reaction,17 (iii) downstream processes monitoring and
optimization, and (iv) discrimination between VLPs and
baculovirus. The TagE-VLP strategy uses the baculovirus
expression vector system that results in a considerable increase
in downstream processing complexity because routine
purification procedures and analytical methods are not able to
strictly discriminate between VLPs and baculovirus.14,18 The
main goal is to introduce a minimal size tag that does not
disrupt particle size, charge, and biological function. This is a
key step toward the development and improvement of the
purification process, also enabling the site-specific labeling of
the VLPs with synthetic molecules of interest, not just
fluorescence tags, to address unmet medical needs. The
versatility and flexibility of TagE-VLP offers the potential to
develop functionalized enveloped VLPs for applications in
vaccine design and targeted drug-delivery systems.

■ RESULTS AND DISCUSSION
Design Criteria and Implementation of the TagE-VLP

Platform. The ability to achieve fully functional chemically
modified enveloped VLPs relies on the efficient incorporation
of a tagged noncanonical amino acid at specific residues
followed by bioorthogonal modification. This strategy, if
performed in live cells, enables the monitoring, characterization,

and VLP quantification from the beginning of the production
process. This is a valuable tool which to improve upstream and
downstream processes. To achieve site-specific in vivo VLP
modification and labeling, we designed a two-step approach
(Figure 1). The first step involves metabolic incorporation of
noncanonical amino acid Aha, a Met analogue that contains an
azide tag, into the hemagglutinin (HA) protein of influenza
VLPs. We chose a triplet codon for Met to code our chemical
tag because of the low incidence of Met in the gene of HA. In
addition, Met replacement by Aha has been shown to be a
powerful tool to introduce azide tags at specific residues on
recombinant proteins or newly synthesized proteins on a cell
without affecting the physicochemical properties or biological
functions.15,16,19,20 The second step consists of bioorthogonal
labeling with a cyclooctyne derivative (in this case, Click-iT
Alexa Fluor 488 DIBO alkyne) through strain-promoted
alkyne−azide [3 + 2] cycloaddition that enables precise
placement of a modification into the nascent enveloped VLPs
in vivo. Labeling may be performed at the desired purification
step to achieve optimal yields and purified VLPs. Briefly, to
produce in vivo labeled enveloped VLPs, cells were grown in
culture and fed with Aha during protein synthesis. Met was
added to a parallel cell culture, which was used as a control.
During protein synthesis, Aha is incorporated as a surrogate for
Met throughout the gene sequence of HA.
HA is a protein from the envelope; thus, the VLPs carry the

azide-tagged amino acid after budding from the host cells. At
this stage, a complex particle is obtained that displays Aha-
tagged HA in the envelope, and that is ideally suited for post-
expression bioorthogonal labeling with a cyclooctyne fluo-
rescent probe (Figure 1a). The time of addition of amino acid
was optimized through small-scale (50 mL) batch production.
The incorporation of Aha into HA protein was performed 12,
24, 36, and 48 h post-infection (hpi) of cells with baculovirus
and assessed by confocal microscopy and flow cytometry
analysis (Figures 1b, S1, and S2). The time of addition that
resulted in a higher concentration of fluorescent VLPs was
found to be 24 hpi (Figure 1b). Further scale-up (500 mL) of
influenza VLP production was performed with this time
reference. The versatility of our TagE-VLP strategy allows for
bioorthogonal labeling at different stages of the production
process of influenza enveloped VLPs. We chose to perform the
SPAAC labeling after the VLPs were harvested because
downstream processing (DSP) is the major bottleneck of
bioprocess design. Fluorescent beads (500 nm) were used in
confocal microscopy analysis as fiducial markers of size and the
green fluorescence signal as a visual reference of successful VLP
labeling and detection. As a result of its multicolor fluorescence
profile, red signal was also acquired. Green−red merged images
allowed discrimination between VLPs (green) and beads
(yellow) dots not only by particle size but also by color.
With this methodology, one can perform quantitative analysis
on the detected VLPs. The number per μm2 and mean
fluorescence intensity (If) of labeled VLPs determined by
imaging processing of confocal images indicates the optimal
conditions to perform the bioorthogonal functionalization step.

Figure 1. continued

addition to color discrimination, for each particle detected, the full width at half-maximum was determined to evaluate the approximately 500 nm size
of the control beads (red) and the subdiffraction limit VLP size (yellow) (see the Experimental section for more details). The control VLP sample
shows no green signal (no labeling with Alexa 488), specific to SPAAC ligation in the experiment samples. Scale bars (white) indicate 2 μm in all
images. Additional information regarding particle detection and RAW confocal images can be found in Figure S1.
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Particles with sizes below the diffraction limit of the
microscope will appear as the point-spread function (PSF) of
the instrument. VLPs are subdiffraction limit particles;
therefore, their signal is the PSF of the microscope
(approximately 240 nm). Particle size analysis was performed,
and the full width at half-maximum (fwhm) was determined, a
parameter that is a better approximation of particle size.
Control fluorescent beads (size of approximately 500 nm)
alone present a fwhm value of approximately 540 nm. The
mixture between VLPs and beads showed a bimodal size
distribution, which indicates the presence of both particles
(Figures 1b and S1). As mentioned, with sizes below the
resolution limit of the microscope, the signal is limited by the
PSF, and the value observed for the VLPs has an average size
distribution of 240 nm, which is the microscope’s PSF. The
control VLP sample with added Met showed no green
fluorescence signal, even after incubation with Alexa probe.
This means that incorporation of Aha is necessary to observe
fluorescence and that azide ligation between the noncanonical
amino acid and the fluorophore is site-specific. The best time to
incorporate Aha into HA protein was 24 hpi (time-dependent
baculovirus infection was performed and is described in Figure
S2a,b) (one reached approximately 3722 labeled VLP per cm2

with an If of 670.5 ± 167 au (arbitrary units) (mean ± SD),
40% and 100% higher than 12 hpi or 36 or 48 hpi,
respectively).
TagE-VLP Platform Improvement of Downstream

Processing of Influenza VLPs. By the optimization of the
amino acid incorporation, the system becomes suitable for
scale-up production and purification of labeled VLPs, detailed

in Figure S3a. During production, to label mainly the HA
protein, the addition of Aha amino acid to the cell culture was
only performed after the late onset of gene expression (hpi =
24).
DSP proceeded with a standard protocol for influenza VLP

purification already established in iBET’s laboratory. Analysis of
all DSP steps to monitor the presence and concentration of
modified VLP across the process was performed by confocal
microscopy (Figures S3 and S4) and by flow cytometry
(Figures S6 and S7) for both labeled and control VLPs. Alexa
probe was added to the samples before analysis. Clarification of
the supernatant, to remove any remaining cells and cell debris,
was performed by means of depth filter technology.21

Intermediate purification involved an anionic exchange
chromatography (AEX) and a concentration and diafiltration
step by using ultrafiltration technology. AEX was operated in
negative (flow-through (FT)) mode, which means that the
working volume is still high. To make the process cost-effective,
labeling with Alexa during purification was only performed after
concentration of the flow through bulk. Size-exclusion
chromatography (SEC) was used in this case as a model of a
polishing step to remove a significant part of the remaining
impurities such as baculovirus, DNA, or host cell proteins
(Figures 2, S4, and S8). Elution of influenza VLPs was
monitored by detecting the absorption of the eluted solution at
234 and 494 nm (the maximum absorption wavelength of Alexa
Fluor 488). Absorption at 234 nm reports roughly all
biomolecules that pass through the detector while absorption
at 494 is specific for the fluorescent VLPs that incorporated the
Alexa-488 probe. This dual detection allows better discrim-

Figure 2. Detailed interpretation of VLP polishing step by means of size-exclusion chromatography for the Alexa-488 labeled VLP. A pair of
detection signals were used to monitor SEC. The elution profile was monitored by detecting the absorption of the eluted solution at both 234 nm
(blue curve) and 494 nm (green curve) (emission wavelength of Alexa probe). The absorption at 234 is where roughly all biomolecules that pass
through the detector contribute to the signal obtained either by absorption or by light scattering (DNA, proteins, and lipids). The detection of the
absorption at 494 is specific for the fluorescent VLPs that incorporated the Alexa-488 probe. This dual detection allows better discrimination
between the particles of interest (VLP) and all other contaminants such as baculoviruses. VLPs are contained in the column void volume. For each
SEC fraction, confocal microscopy images were taken to monitor the presence of modified VLP (green fluorescent VLP). Scale bars (white) indicate
2 μm in all images. Images are ROI from larger independent images to better visualize the subdiffraction green dots. Merge (green−red) images are
shown for clarity. According to the scheme highlighted in Figure 1, a red signal was also acquired, and from green−red merge images, 500 nm beads
can be discriminated from VLPs (yellow and green dots, respectively). At the end of the SEC, between 115 and 130 mL of elution volume,
concerning the elution of small molecules, there is evidence of detector signal saturation due to the elution of a high concentration of free Alexa-488
in the solution used in the labeling of VLPs.
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ination between the particles of interest VLP and all other
contaminants such as baculovirus. Although SEC removed
some baculovirus, the product still contained impurities. A
fluorescence-activated cell-sorting (FACS) step was added at
the end to overcome this issue and separate VLPs from
baculovirus by taking advantage of their distinct particle sizes
(150−200 and 300−400 nm, respectively) (Figures S3 and S5).
Additional information regarding particle detection, individual
green and red channels and RAW confocal images can be found
in Figure S4a,b for the control and Aha addition experiments.
To validate the approach, each sample of the DSP process was
also studied by flow cytometry. SSC−green fluorescence and
red−green fluorescence 2D correlograms are depicted in panels
a and b of Figure S8, respectively. Detailed procedures for
confocal microscopy and flow cytometry acquisition and
apparatus are available in the Experimental section.
Recent reports have described the ability to detect and sort

lipid-based particles, exosomes, and enveloped viruses, with
flow cytometry.22,23 HA concentration and number of particles
measurement was performed to assess VLP production yields
using the TagE-VLPs strategy. HA concentration at harvest
time was 1.4 μg mL−1 for both Met control and Aha
experiments. Nanoparticle tracking analysis revealed that both
the control and experiment cultures produced VLPs in the
same order of magnitude (1.56 × 109 and 1.39 × 109 particles
mL−1), respectively, meaning that the VLP production yields
were not affected.
Further analysis of total protein, DNA concentration, and

baculovirus content were also performed during upstream and
downstream processing. These analytical methods are essential
to characterize the bioprocess and to make sure that control
and labeled VLP data are comparable (data not shown). The
polishing step (SEC; Figures 2 and S4) and FACS (Figures 3,
S6, S7, and S8) are discussed later. It is consistently observed
(Figure 1b) that the control VLPs, with Met, does not exhibit
significant green fluorescence signal, as seen in the flow
cytometry 2D correlograms from Figures S6, S7, and S8. (The
VLP gate for every DSP step of the control reveals no increase
in positive Alexa 488 population, whether or not a positive
Alexa 488 signal is observed for the Aha experiment).
Moreover, the concentrated Aha-labeled VLP sample showed
an If of 670.5 ± 167 au in the confocal images, whereas only
background fluorescence intensity levels were detected in the
control VLP samples. The residual green signal detected at the
control concentration step is mainly a result of unspecific
binding of the probe (incorporation onto hydrophobic moieties
of lipid membranes) to process impurities that are more easily
observed at higher concentrations. Furthermore, the concen-
tration detected was residual relative to the labeled VLPs
(Figures S6, S7, and S8). The data confirmed the presence of
labeled VLPs across DSP, with levels of concentration and
purity consistent with the evaluated step. Ultrafiltration
permeates and column-wash fractions from both AEX and
SEC were analyzed, and no loss of labeled VLP was detected.
These results demonstrate that this methodology is a powerful
tool to monitor, online or at-line, each of the steps during
manufacture of the product of interest, which can play an
important role in DSP optimization.24 Online and at-line
process analyzers are inserted in one of the major categories of
process analytical technology (PAT) tools, having important
applications in the biopharmaceutical industry.
The purification process flowchart was chosen as a proof of

concept for the applied methodology, which means that other

Figure 3. Discrimination between VLPs and baculovirus by FACS
analysis. (a) Flow cytometry of a baculovirus sample (used for
infection and VLP production). A 2D correlogram of side scatter and
green fluorescence signals are shown with 5% contour plots of each
population. A size-scatter size ruler was made with 100, 200, and 500
nm size fluorescent beads (grayscale). Gate thresholds for negative and
positive populations were performed using 100 nm bead signals. The
top-right quadrant indicates green fluorescent positive >100 nm
particles (VLP). In each chart, the [100−200] nm per Alexa 488
positive population gate (VLP) was built to quantify and sort the
presence of labeled VLP. This analysis monitors the scatter profile of
the 200−400 nm rods (red) of baculoviruses that have no green
fluorescence. (b) Flow cytometry of a VLP sample before the DSP
steps (blue) shows that there are clearly two particle populations: one
green positive population at ≈200 nm and one with lower and
nonexistent green fluorescence that has a wider size distribution. (c)
Flow cytometry of F4 from the VLP SEC purification step. Analysis of
the green fluorescent signal shows that the >200 nm fraction is
reduced relative to A as a result of the VLP-specific green fluorescence
signal. This sample was sorted with populations P1 (<200 nm
population, VLP-rich) and P2 (>200 nm population, baculovirus-rich).
(d) 2D correlogram of red and green fluorescence signals are shown
for each population depicted in I (baculovirus), II (before DSP), and
III (SEC F4). Gate thresholds for negative and positive populations
were performed using 100 nm bead signals: the bottom-right quadrant
is the VLP-positive quadrant (green, positive particles and red,
negative particles). A significant green signal and no red signal
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schemes and types of chromatography can also be exploited. As
already discussed, labeling was performed prior to the SEC step
to decrease the process cost. Because the previous chromato-
graphic step was performed in a negative mode, the SEC step
allowed the optimization process to be fine-tuned. Each fraction

Figure 3. continued

correlates with modified VLP samples. Figures S6a,b; S7a,b; and S8a,b
depict additional flow cytometry performed in the study for all steps of
the DSP process.

Figure 4. Integrity and functionality of modified VLPs. (a) Quantification of the number of fluorescent particles detected in each DSP step in the
control, unlabeled VLP, and in the labeled VLP (steps from Figure S3a). (b) Quantification of the number of fluorescent particles detected in each
SEC fraction in the labeled VLP purification (SEC from Figure 2). (c) Hemagglutination assay for each step of the modified VLP purification
process to assess preservation of HA biological function. (d) Hemagglutination assay for each fraction of the SEC step. (e) TEM analysis of control
VLPs from the concentration step of the purification process. Scale bar indicates 100 nm. (f) TEM analysis of modified VLPs from the concentration
step of the purification process. Scale bar indicates 100 nm. Uncropped and additional TEM images are available in Figure S10. The determination of
the concentration of the labeled VLP solution based on the particle detection in panels c and d was also performed using eq 2 from the Experimental
section and is available in Figure S4b.
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of this polishing step was interpreted in detail by confocal
microscopy (Figures 2 and S4) and confirmed by flow
cytometry analysis (Figure S8). One of the drawbacks of the
baculovirus expression system is that it is difficult to remove
baculovirus from the purified complex enveloped product.25,26

The rod-shape form of baculovirus makes it difficult to
differentiate them from VLPs because, even with different
detection methods, there are angles at which their sizes appear
similar. Like VLPs, baculovirus also bud out of the cell to give
an envelope content that is similar in the two species.26 Control
VLPs were injected onto a SEC column, and the elution profile
was followed at 234 nm (280 and 260 nm were also tested but
showed lower absorbance intensity and signal-to-noise ratio)
(data not shown). The elution profiles of both the labeled VLP
and control samples are very similar, with the VLP sample
eluting at the void volume of the SEC column as expected
(Figure 2). For modified VLP bulk, the absorbance intensity at
494 nm was also evaluated (emission wavelength of Alexa
probe). Usually, VLP samples are contained in the void volume
peak of the chromatogram as a result of their high Stoke radius.
However, analysis of the two wavelengths shows that the two
peaks are not superimposable. Fraction F4 presented a higher
fluorescence (494 nm) value, which does not correspond to the
peak maximum at 234 nm. Confocal microscopy images also
revealed that F4 contains a higher concentration of labeled
VLPs, which is in agreement with results from SEC
chromatogram and flow cytometry analyses (Figures 4a,b and
S8). This means that a mixture of VLPs and other components
elute in the void volume. Due to its rod shape, baculovirus
elutes in different volumes of the chromatogram.25 Notably,
this labeling methodology enables better discrimination
between VLPs and other process impurities, in particular
baculovirus, which is the major contaminant in this process.
The online detection of VLPs leads to a more-informed
decision as to which fractions should be selected to continue in
the purification process, an important step to obtain a higher
recovery yield with improved VLP purity. The peak at the end
of the chromatogram corresponds to free probe (494 nm) or
DNA and low-molecular-weight contaminants (234 nm).
TagE-VLP Maintenance of Integrity and Functionality.

Modified VLP integrity and HA biological function were
assessed by means of a hemagglutination assay (Figure 4c,d).
The correlation of their biological integrity with the number of
fluorescent particles is also demonstrated by the quantification
of the acquired images and particle counting (Figure 4a,b).
Control and modified VLP HA concentration values are
comparable for each step of the production and purification
processes. This assay evaluates the biological interaction
between sialic acid receptors present in erythrocytes and HA
protein.27−29 The same interactions happen under our
conditions, which proves that the HA biological function is
preserved even after chemical functionalization and labeling.
The ability of these enveloped VLPs to maintain their
characteristics may indicate that this methodology could be
used to functionalize these particles with distinct targets. HA
content increases as fluorescence intensity increases (Figures 2
and 4d), which means that the labeling is specific for Aha-
containing influenza VLPs. SEC fractions F4 and F5 give a
higher percentage of HA recovery, which is in agreement with
confocal microscopy results and number of fluorescent VLP
detected (Figures 2 and 4a,b) and flow cytometry data (Figure
S8).

As mentioned above, modified VLPs can be fluorescently
labeled using Alexa Fluor488 probe. When this labeling is taken
advantage of, both control and TagE-VLPs were incubated with
Alexa, separated in a sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) gel, and revealed using a
fluorescent image analyzer (Figures 5c and S11). No
fluorescent bands were detected for control VLPs, meaning
that no labeling occurs without the noncanonical amino acid
incorporation, as previously described. However, in VLP
samples with Aha modification, it was possible to detect three
fluorescent bands. These bands were excised from the gel and
identified by nano liquid chromatography−mass spectrometry
(nanoLC−MS). Bands identified with (2) and (3) were
confirmed by mass spectrometry as Hemagglutinin of influenza
A virus. Band (3) is probably a result of protein degradation
during time. Band (4) was identified by mass spectrometry as a
Telokin-like protein of Autographa californica nuclear poly-
hedrosis virus, i.e., a protein from the baculovirus. Because this
virus replicates during infection and VLP production, it is
possible to obtain some residual baculovirus Aha incorporation.
However, Aha addition to the cell culture was only performed
after the late onset of gene expression to minimize this
possibility. Gel fluorescent data supports the specificity of Aha
incorporation into HA. The fluorescence intensity of
baculovirus (band (4)) is clearly lower than HA corresponding
ones and only appears when samples were precipitated
resulting in VLP degradation. Mass spectrometry also detected
Met−Aha modification in several peptides of the fluorescent
bands, observed by a shift in the spectra (Supporting Table 1).
Therefore, Aha incorporation is preferentially made into HA
proteins, a result of amino acid time of addition optimization.
TEM analysis was performed to assess the presence, integrity,
and morphology of both control (Figure 4e) and modified VLP
samples (Figure 4f). The morphology is maintained; their size
(∼170 nm) and spherical shape are similar (Figure S5a,b).
Furthermore, ultrastructural details of both VLP envelopes
revealed characteristic influenza HA spikes.30,31 Moreover,
Western blot analysis for HA- and M1-specific detection was
performed (Figures 5a,b and S11), revealing that both control
and modified VLPs have the two influenza proteins. Protein
identity was confirmed by mass spectrometry (Band ID 1 and 2
from Supporting Table 1). This result further confirms the
intact composition of modified VLPs.

FACS Analysis Enabling of VLP and Baculovirus
Discrimination. Flow cytometry analysis allowed the
detection and characterization of labeled VLPs and size
discrimination between these particles (100−200 nm spheres)
and baculovirus (200−400 nm rods). Fluorescent beads of 100,
200, and 500 nm were used as a particle size ruler in flow
cytometry with the side-scatter signal,22,23 which was then used
to evaluate the VLP sample size distribution. It is possible to do
a direct correlation between bead size and VLP samples
because their refractive indexes are similar.
A 2D correlogram of side scatter and green fluorescence

signals was acquired for each bead (100, 200, and 500 nm) for
the VLP and control samples to detect the presence of
baculovirus and evaluate further particle separation by cell
sorting. A baculovirus sample (used for cell infection and VLP
production) was analyzed to monitor the scatter profile of these
200−400 nm length rod-shape particles. Sizes that ranged from
200 to 500 nm were observed, which indicates that these rods
are polydisperse (Figure 3a). A sample from the harvest step
showed that at this stage there are clearly two particle
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populations: one green positive population at ∼200 nm and
one with lower green fluorescence that has a wider size
distribution (Figures 3b and S7). The size heterogeneity comes
from a VLP−baculovirus mixture because the sample is from an
early purification step still rich in baculovirus contaminants. A
fraction from the SEC step (Figures 3c and S8) shows that the
green fluorescent signal of the >200 nm fraction is reduced
relative to baculovirus and harvest panels (Figure 3a,b). The
presence of baculovirus is reduced relative to VLP in the SEC
sample that is from a final purification step. However, the SEC
fraction still contains some baculovirus because the baculovirus
has a broad elution profile as a result of their rod-like shape.
VLP sorting of the SEC F4 fraction sample was performed to
separate the VLPs from baculovirus. Fluorescent beads (200
nm) were used to define two sorting populations: P2 (>200 nm
particles) is a baculovirus-rich population, and P1 (<200 nm
particles) is VLP-rich (Figure 3c). This strategy increased the
yield on VLP production and minimized the presence of
baculovirus in the final DSP product.
TEM analysis of baculovirus control (used to infect cells)

and modified VLP (after concentration) was used to evaluate
the size and heterogeneity of samples (Figure 6a). Baculovirus
samples are characteristically rod-shaped with an average size of
approximately 250 nm. As expected, the concentrated VLP
sample contained both small and large particles, which
corresponds to VLPs or baculovirus and process impurities,
respectively. The size of the VLPs is different from the one
presented previously (Figure 4e,f), which confirms the
heterogeneity of the system.32 It is clear that there are
unwanted larger particles at this stage of the process that are
not VLPs, or at least not complete ones, because of the lack of
HA spikes. This result provides an indication of what to expect
from both sorting populations. The presence of VLP and
baculovirus was performed for the baculovirus control and P1
and P2 sorting populations by atomic force microscopy (AFM;
Figure 6b). AFM images of the baculovirus control samples
revealed the well-known rod-like structure. Images of the P1
sorting population (<200 nm, VLP-rich fraction) revealed only
the presence of spherical particles. However, the P2 sorting
population (>200 nm, baculovirus-rich fraction) presented only
large particles, which mainly consisted of baculovirus rod-
shaped particles and other large process impurities. The
baculovirus size in the P2 sorting population is similar to that
calculated from the control sample. This data confirms that our
system is suitable as a FACS purification step, and represents
important progress to meet the increasing demand for VLP−
baculovirus separation and DSP quality control requirements.

■ CONCLUSIONS
Herein, we report a straightforward two-step strategy to
chemically functionalize and label complex enveloped VLPs
in vivo by using SPAAC. Unlike previous reports, this
methodology is designed for VLPs that are able to display
membrane proteins in their lipid bilayer and potentiate the
plethora of antigens that can be presented to cells in vaccine
design. The functionalization of these particles, particularly
those with membrane proteins, is not straightforward with
current methods. The technical challenges and antigen choice
limitations can be overcome by using the TagE-VLPs strategy
described here. This flexible and site-specific system does not
have an impact on biological function of the VLPs studied and
can be potentially used in several virus or VLPs. The reported
strategy can be used to functionalize these particles and expand

Figure 5. Identification of HA and M1 proteins by Western blot
analysis and fluorescent band detection of labeled influenza VLPs’
proteins. (a) M1 influenza protein detection on control and labeled
VLPs by Western blot analysis. M1 protein from influenza A H1N1
strain was used as positive control (M1 standard). Band (1) was
excised and identified as M1 by mass spectrometry. (b) HA influenza
protein detection on control and labeled VLPs by Western blot
analysis. H3 VLP from influenza A H3 strain was used as the positive
control (H3 standard). Band (2) was excised and identified as HA by
mass spectrometry. (c) SDS-PAGE gel fluorescence detection of
control and labeled VLPs incubated with Alexa 488 probe. Bands (2)
and (3) were excised and detected as HA by mass spectrometry. Band
(4) was detected as a Telokin-like protein of baculoviruses. The term
“pp” means precipitated sample.
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their utility in exciting applications, such as vaccine design, drug
delivery or molecular-imaging agents for diagnostics.
Importantly, the use of flow cytometry to analyze

polydisperse lipid suspensions that contain VLPs has greatly
enhanced our knowledge of their heterogeneity. Techniques
that characterize, discriminate, and accurately separate each
individual population with particle counting and concentration
determination are scarce for nanosized particles. The extended
use of FACS to characterize VLPs provides a better description
and understanding of purified VLPs produced under different
methods and systems and enables proper identification and
separation of contaminants and desired particles. This easy-to-
use and fast methodology only requires fluorescent beads for
size calibration, which lends this technique to be used as an at-
line, high-throughput, nondisruptive method with which to
monitor all stages of VLP production in addition to current
techniques, which are time-consuming and typically do not
allow analysis of the VLPs in their native form. Both fluorescent
labeling and FACS methods described in this manuscript are
powerful tools for DSP monitoring and optimization that allow
the improvement of product recovery yields and increase VLP
purity levels.
It is worth to note that this method is not exclusively

dependent on two-dimension particle discrimination. The new
bioorthogonal labeling method here reported allows to
engineer biologically functional VLPs, for instance, by
conjugation of synthetic epitopes that are nonfluorescent, as
the size signal enables one-dimension functionalized VLP−

baculovirus separation. We have sorted VLPs from baculovirus
using their distinctive size and green color discrimination (see
Figure S9). Having both differentiating parameters only
increased the accuracy of the method, but restricting to one
variable does not obviates its application and multifunctionalize
the Aha moiety with other bioactive molecules.

■ EXPERIMENTAL SECTION
Cell Culture. High Five cell line (Trichoplusia ni derived

BTI-Tn-5B1-4) was obtained from Invitrogen (B855-02,
Invitrogen Corporation, Paisley, UK). Cells were routinely
cultured in ESF921 protein-free medium (960-001-01,
Expression Systems) in 125 mL Erlenmeyer flasks (430421,
Corning) with a working volume of 10 mL. High Five cells
were kept in a humidified incubator at 27 °C and 110 rpm.
Every 3−4 days, after reaching a cell concentration of 2−3 ×
106 cells mL−1, they were reinoculated at 3 × 105 cells mL−1.
Cell concentration and viability were determined by hemocy-
tometer cell counts (Brandt, Wertheinmain, Germany) and
trypan blue exclusion dye method (Merck, Darmstadt,
Germany). High Five cells were chosen as producer cell line
due to the higher productivity achieved for the proof-of-
concept of the method described. However, when considering
late-stage biopharmaceutical production, it is crucial to evaluate
the safety of this host cell line because it was reported the
presence of latent alphanodavirus in the High Five genome.33,34

By itself, the virus may not constitute a burden; however, if it
assumes the replicative form, it may contaminate final product

Figure 6.Modified VLP detailed analysis. (a) TEM images of the major impurity in VLP production, a baculovirus, and a VLP sample before sorting
revealing optimal VLP and large undesirable particles. Scale bars indicate 100 nm in all images. Uncropped and additional TEM images are available
in Figure S10. (b) AFM images (error and 3D images) of a baculovirus control sample, showing rod-like morphology of this virus. Samples from
each DSP step were sorted into P1 and P2, as described in Figure 3c. AFM images of P2 and P1 samples clearly show <200 nm spherical particles,
consistent with VLP, and on the opposite side, the >200 nm show rod-shaped, nonspherical particles more akin to baculovirus morphology, as
shown in the left AFM panels. The longitudinal (fill line) and transversal (dashed lines) cross-sections were performed to better illustrate the
spherical and rod shapes of each particle visualized in each sample.
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preparations, requiring extra downstream processing efforts.35

Nevertheless, it has been described as there being no
contamination present in the Invitrogen master High Five
cells bank,36 the cell source used, and additionally, there are not
any reports indicating the infection of human hosts by the
alphanodavirus. In fact, both High Five and Sf9 cell lines have
regulatory acceptance for manufacturing of biologicals, such as
Cervarix, the GSK HPV vaccine, or Flublock, the Protein
Sciences influenza vaccine.33

VLP Production and Metabolic Labeling Optimiza-
tion. For production studies, cells were cultured in 500 mL
Erlenmeyer flasks (431145, Corning) with a working volume of
50 mL or in 2000 mL Erlenmeyer flasks (431255, Corning)
with a working volume of 250 mL. High Five cells infection
with recombinant baculovirus (kindly provided by Redbiotec
AG) encoding the H3 subtype influenza A−Johannesburg/33/
94 and M1 A−California/06/2009 influenza virus strains was
performed at a cell concentration at infection (CCI) of 2 × 106

cells mL−1,with a multiplicity of infection (MOI) of 15 IP
cell−1. After 12 h post-infection, the culture medium was
removed by centrifugation at 200g for 10 min, and the cells
were washed with D-PBS (14190−169, Gibco). ESF921
methionine deficient and protein-free medium (96-200-01,
Expression Systems) was then added to the infected cells.
Noncanonical amino acid incorporation was tested at several
hpi values (18, 24, 36, and 42 hpi) to identify the best condition
for VLP production. The culture medium was supplemented
with 4 mM Aha (AS-63669, AnaSpec). To generate appropriate
controls, this study was also carried out with 4 mM L-
Methionine (M2893, Sigma-Aldrich) at the same conditions.
Harvest and Clarification. High Five infected cells were

harvested at 48 hpi by centrifugation at 200g for 10 min (JA10
rotor, Avanti J25I centrifuge, Beckman Coulter). Harvest was
set to 48 hpi, at which time productivity was highest, a
parameter that was screened and optimized previously (data
not shown). The pellet was discarded and Benzonase (101654,
Merck Millipore) was added to the supernatant at a final
concentration of 50 U mL−1 and incubated at room
temperature (22 °C) for 15 min. The clarification of
supernatant was performed by dead-end filtration using a
Sartopore fi l ter with 0.45 + 0.2 μm pore s ize
(SART5445307H7-SS-A, Sartorius, Germany). The clarifica-
tion of VLP-containing bulk was performed at a constant flow
rate of 100 mL min−1 using a Tandem 1081 Pump (Sartorius
Stedim Biotech). The pressure was monitored by an in-line
pressure transducer (080-699PSX-5, SciLog) to control
possible overpressure. The filtration module was previously
conditioned with three capsule volumes of buffer (50 mM
HEPES, pH 7.4, and 300 mM NaCl as working buffer).
Anion-Exchange Chromatography. Sartobind Q MA 75

(93IEXQ42DB-12 V, Sartorius) membrane adsorber was used
as the first purification step, operated in negative mode (FT).
The membrane adsorber was equilibrated with 50 mM HEPES,
pH 7.4, and 400 mM of NaCl equilibration buffer. The VLP
clarified suspension was diluted with concentrated NaCl buffer
to match the conductivity of equilibration buffer. The flow rate
was set to 4.76 MV min−1, and the VLPs were collected in the
FT pool. A final elution step was performed with 50 mM
HEPES, pH 7.4, and 1.0 M NaCl elution buffer to guarantee
that all particles were removed from the membrane adsorber.
VLP concentration along these fractions was determined by
hemagglutination assay and nanoparticle tracking analysis. All

chromatographic steps were performed at room temperature
(RT) (22 °C).

Ultrafiltration and Diafiltration. Sartobind Q FT pool
containing VLPs were concentrated using tangential flow
filtration (TFF). Ultrafiltration experiments were conducted
using flat sheet Pellicon XL Ultrafiltration Module Biomax 300
kDa 0.005 m2 (PXB300C50, Merck Millipore).The membrane
module was set up accordingly with the manufacturer’s
instructions. The ultrafiltration module was preconditioned
with deionized water to eliminate trace preservatives and
equilibrated with working buffer before the concentration step.
To ensure sterility, the TFF system was sanitized with 0.1 M
NaOH and incubated with this solution for 60 min. A Tandem
1081 Pump (Sartorius Stedim Biotech,Germany) was used on
the feed side set up to a fixed flow rate of 40 mL min−1.
Transmembrane pressure (TMP) was controlled by adjusting
the retentate flow rate using a flow-restriction valve. The
pressure was monitored at feed inlet, retentate outlet, and
permeate outlet by in-line pressure transducers (080-699PSX-5,
SciLog) The feed−retentate and the permeate volumes were
monitored using a technical scale (TE4101, Sartorius Stedim
Biotech). At a proper feed volume, three diafiltration volumes
with working buffer were performed. After achieving the
desired concentration factor, the TFF loop was completely
drained, and the VLP retentate was recovered. Samples of the
final retentate and permeate were taken to assess process yield.

Size-Exclusion Chromatography. Concentrated VLPs
were labeled with 20 μM of Alexa Fluor 488 (C-10405, Life
Technologies) for 60 min, according to manufacturers’
instructions and prior to the polishing step. Size-exclusion
chromatography was performed using a HiLoad 16/600
Superdex 200 pg column (GE Healthcare) coupled to an
ÄKTA Explorer 10 liquid chromatography system (GE
Healthcare) equipped with UV and conductivity−pH monitors.
System operation and data gathering and analysis was done
using the UNICORN 5.0 software (GE Healthcare).
The column was loaded with 5 mL of concentrated VLPs,

using a 5 mL capillary loop, at a constant flow rate of 0.5 mL
min−1. Working buffer was used as eluent, and the eluted
fractions were collected for further analyses. Elution of
influenza VLPs was monitored by detecting the absorption of
the eluted solution at 234 and 494 nm (maximum absorption
wavelength of Alexa Fluor 488). Absorption at 234 reports
roughly, all biomolecules that pass through the detector either
by absorption or by light scattering (DNA, proteins, and lipids).
The detection of the absorption at 494 is specific for the
fluorescent VLP that incorporated the Alexa-488 probe. This
dual detection allows better discrimination between the
particles of interest VLP and all other contaminants, such as
baculovirus.

Hemagglutination Assay. Hemagglutinin protein was
quantified using a hemagglutination assay. The assay was
carried out based on the protocol described elsewhere37 with
some modifications. Briefly, 25 μL of D-PBS (14190-169,
Gibco) were added in each well of a clear, V-bottom 96 well
microtiter plate (611 V96, Sterilin). In the first well (upper
left), 25 μL of each sample was added, and then 2-fold serial
dilutions (25 μL of sample in an equal volume of PBS) were
performed. The excess 25 μL from the final dilution was
discarded. After this step, 25 μL of 1% chicken erythrocytes
(Lohmann Tierzucht GmbH, Germany) was added to each well
of each serial dilution series. The plate was incubated at 4 °C
for 30 min without disturbance. As a positive control, influenza
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vaccine (Influvac, Abbott) was used. The level of hemaggluti-
nation was inspected visually for all of the wells, and the highest
dilution capable of agglutinating chicken erythrocytes was
determined.
We have plotted the hemagglutination assay according to the

percentage (%) of HA recovery in each analyzed sample. This
percentage is determined according to eq 1:

=
×
×

×
V

V
% HA recovery

[HA]

[HA]
100DSP step DSP step

initial step initial step (1)

Total Protein Quantification. Total protein was quanti-
fied using the BCA Protein Assay Kit (23225, Thermo Fisher
Scientific) according to the manufacture’s protocol. Bovine
serum albumin (BSA) was used for the calibration curve
(23209, Thermo Fisher Scientific). To avoid matrix interfer-
ence, the samples were diluted between 2- and 256-fold. The
assay took place in a clear 96 well microplate (260895, Nunc)
and the absorbance at 562 nm was measured on Infinite 200
PRO NanoQuant (Tecan) microplate multimode reader.
Total dsDNA Quantification. Total DNA was quantified

using the fluorescent-based Quant-iT Picogreen dsDNA assay
kit (P7589, Invitrogen) according to the manufacturer’s
instructions. To avoid matrix interference, the samples were
diluted between 2- and 256-fold with the provided reaction
buffer. The assay took place in a black 96 well microplate, flat
transparent (3603, Corning), and the fluorescence was
measured on Infinite 200 PRO NanoQuant (Tecan) microplate
multimode reader.
Nanoparticle Tracking Analysis. Total virus-like particles

concentration and size distribution were measured using the
NanoSight NS500 (Nanosight Ltd.). The samples were diluted
in D-PBS (14190−169, Gibco) so that virus-like particles
concentration would be in the 108−109 particles mL−1 range
(the instrument’s linear range). All measurements were
performed at 22 °C. Sample videos were analyzed with the
Nanoparticle Tracking Analysis (NTA) 2.3 analytical software
(release version build 0025). Capture settings (shutter and
gain) were adjusted manually. For each sample, 60 s videos
were acquired, and particles between 70 and 130 nm were
considered.
Confocal Microscopy. Using Life Technologies (Carlsbad,

CA) Tetraspeck beads, one can use as visual reference of
successful VLP labeling and detection. Due to its four-color
fluorescence using green (which also detects labeled VLP) and
red (specific for beads) fluorescence, one can perform
quantitative analysis on the detected VLP. An inverted confocal
point-scanning Zeiss LSM 710 microscope equipped with 405,
458, 488, 561, and 633 nm lasers was used. Due to the
diffraction limit associated with microscopy techniques, no
particle below that threshold can be visualized with high
resolution. Thus, it would appear the point-spread function
(PSF) of the instrument. VLP are subdiffraction limit particles;
thus, their signal in the microscope would be the PSF of the
microscope (approximately 240 nm). By using 500 nm size
fluorescent beads as a control, together with their dual-
fluorescence emission spectra, one can perform an accurate
detection of subdiffraction limit particles minus VLP. This
methodology was used to evaluate the best time for amino acid
(Aha or Met) addition after baculovirus infection: 12, 24, 36,
and 48 hpi were evaluated. Dilutions of each condition’s
supernatant (100-fold) were deposited into IbiTreat 8
microwell slides (Ibidi, Martinsried, Germany) and allowed to

attach for 1 h. Each preparation was then labeled with 20 μM of
Alexa Fluor 488 (C-10405, Life Technologies) for 30 min
according to manufacturers’ instructions. The sample was
washed three times with PBS, and a 500-fold dilution of 500
nm fluorescent beads was added to each sample for 30 min.
Medium was changed for fresh PBS. In all steps, the PBS used
for dilution preparation, wash steps, and sample acquisition,
was filtered with a 0.1 μM nylon filter. Control VLP
(methionine amino acid added during VLP production;
M2893, Sigma-Aldrich), modified VLP (with the Click-it
noncanonical amino acid, Aha; AS-63669, AnaSpec), and 500
nm beads were imaged using a 63× oil objective and green and
orange channels were acquired. From each independent
experiment at least three images at different viewfields in the
microslide were taken for all samples. ImageJ software was used
to perform merge images as well as to perform particle count
and detection and size analysis in each preparation from which
the full width at half-maximum was determined (reflects
particle size). From the number of particles detected, we
estimated the concentration of fluorescent VLP [VLPfluo] in
each DSP step and SEC fraction according to the relationship
in eq 2:

= × × ×N a a
V

[VLP ] ( / ) dil
1

fluo coverslip image (2)

where N is the number of fluorescent VLP detected in the
microscopy image, acoverslip and aimage are, respectively the area of
the microscope coverslip (9.4 × 10.7 mm for each microwell)
and the area of the acquired image (44.5 × 44.5 μm), dil is the
dilution factor of the added VLP (100-fold in our case), and V
is the sample volume.

Flow Cytometry. Detection and characterization of labeled
VLP and size discrimination between VLP (spheres of 100−
200 nm) and baculovirus (rods of 200−400 nm) with flow
cytometry were performed using a BD LSR Fortessa (BD
Biosciences, San Jose, CA). It is equipped with three lasers
(violet, 405 nm; blue, 488 nm; red, 640 nm), forward- and side-
scatter detectors, and nine fluorescence emission detectors
(530/30; the green channel was used for VLP-A488 and 100,
200, and 500 nm Tetraspeck fluorescent beads). The side-
scatter detector was used to define the detection threshold.
Using 100, 200, and 500 nm beads, one can build a particle size
ruler in flow cytometry with the scatter signal,23 which can then
be used to evaluate the VLP samples size distribution. The
refractive index depends on the material of the scattered
solution; thus, the direct correlation of bead size and VLP can
only be achieved if each sample has approximately the same RI.
The RI for PBS; UF retentate; SEC fractions (100-fold
dilution); baculovirus (100-fold dilution); and 100 (2000-fold
dilution), 200 (1000-fold dilution), and 500 nm beads (500-
fold dilution) are, respectively, 1.334, 1.335, 1.335, 1.336, 1.334,
1.334, and 1.334, measured using a digital refractometer
(13950000, AR 200 Digital Refractometer, Leica). The side-
scatter−Alexa-488 correlograms were acquired for each bead
and VLP sample, at the dilutions previously stated, to detect
baculovirus presence and evaluate further particle separation by
sorting. In all steps, the PBS used for dilution preparation, wash
steps, and sample acquisition was filtered with a 0.1 μM nylon
filter.

VLP Sorting. Sorting of the SEC F4 sample from the
downstream processing was performed to separate VLPs from
the baculovirus-rich fraction (>200 nm). Fluorescence activated
sorting was performed in a BD FACS Aria III equipped with
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three lasers (blue, 488 nm; yellow-green, 561 nm; and red, 633
nm). The 200 nm fluorescent beads were used to define two
sorting populations: P2, corresponding to the >200 particles
detected, which is a baculovirus-rich population; and P1, which
is the <200 nm particles that, in contrast to P2, are VLP-rich.
Each population was acquired in vials filled with PBS, and the
assessment for the presence of VLP and baculovirus was
performed by atomic force microscopy.
Atomic Force Microscopy. AFM images of VLPs and

baculovirus were acquired using a JPK Nano Wizard II (Berlin,
Germany) mounted on a Zeiss Axiovert 200 inverted
microscope (Göttingen, Germany). The AFM head is equipped
with a 15 μm z-range linearized piezoelectric scanner and an
infrared laser. All samples were prepared in freshly cleaved
mica. For scanning in liquid environment, the mica was
pretreated with poly-D-lysine for 20 min and rinsed with miliQ
water. A 50 μL drop of each sample was added to the mica and
rinsed with PBS buffer at least four times. The sample was then
allowed to air-dry or maintained in buffer for subsequent
imaging. Scanning was performed using uncoated silicon ACL
cantilevers from Applied NanoStructure for air-dried samples
and uncoated silicon cantilevers HQ:CSC38−No Al from
MikroMasch for samples in liquid medium. The ACL
cantilevers had typical resonance frequencies between 145
and 230 kHz and an average spring constant of 45 N/m.
HQ:CSC38 cantilevers had typical resonance frequencies
between 5 and 17 kHz and an average spring constant of
0.03 N/m. All measurements were carried out in contact mode.
All images were obtained with the same or similar AFM
parameters (set point, gain, and scan rate) values. Set point and
gain were continuously adjusted during scanning to maintain
the lowest possible value and reduce sample damage.
Transmission Electron Microscopy. To analyze the

presence, integrity and morphology (shape and size) of the
VLPs, electron microscopy was performed as follows: a drop (5
μL) of sample was adsorbed onto a Formvar coated 150 mesh
copper grid from Veco (Science Services) for 2 min. The grid
was washed five times with sterile filtered distilled H2O. Next, it
was soaked in 2% uranyl acetate for 2 min and dried in air at
room temperature (22 °C). The samples were examined with a
Hitachi H-7650 120 Kv electron microscope (Hitachi High-
Technologies Corporation).
PCR. Baculovirus viral DNA was extracted and purified using

the High Pure Viral Nucleic Acid Kit (Roche Diagnostics)
using the manufacturer’s instructions. The number of genome
containing particles were monitored by real time quantitative
PCR (RT-qPCR) following the protocol described elsewhere.38

Western Blot Analysis. Western blot analysis was
performed for control and modified influenza VLPs with both
precipitated and nonprecipitated samples. As a control, M1
protein from influenza A H1N1 strain (SinoBiological) and H3
influenza VLP (produced and purified at iBET) were used.
Protein precipitation was performed with 20% (v/v) ethanol
overnight. Loading buffer (LDS sample buffer and reducing
agent (Invitrogen)) was added, and protein samples were
incubated at 70 °C for 10 min. Influenza VLPs were separated
in a 4−12% (w/v) polyacrylamide NuPAGE gradient precast
gel (Invitrogen). Samples were resolved for 60 min at a
constant voltage of 200 V and transferred into a PVDF
membrane using iBlot dry blotting system (Invitrogen).
Membranes were blocked with 5% (w/v) of dry milk (Merck
Millipore) in Tris-buffered saline with 0.1% (w/v) of Tween 20
(T-TBS buffer) for 1 h. After blocking, membranes were

incubated overnight with the respective primary antibody: anti-
influenza A virus M1 goat antibody (dilution 1:2000) (Abcam
ab20910) or a 1:1 mixture of anti-A−Johannesburg/33/94
sheep serum (dilution 1:1000) and anti-A−Nanchang/933/95
(H3N2) HA sheep serum (dilution 1:1000) (both provided by
NIBSC). Western blot detection was performed with the
corresponding anti-goat or anti-sheep secondary antibody
(dilution 1:2000, 1 h incubation) conjugated to horseradish
peroxidase and developed using the ECL detection reagent
protocol (GE Healthcare).

Fluorescence Imaging. Control and labeled VLP samples
were incubated with 20 μM of Click-iT Alexa Fluor488
fluorescent probe for 30 min prior to SDS-PAGE gel running. A
FLA-5100 fluorescent imaging system (Fujifilm Life Sciences)
was used to reveal the gel and analyze the presence of
fluorescent bands. The 473 nm laser was used, and images were
acquired with 25 μ of resolution and at a voltage of 600 V.

Mass Spectrometry. HA and M1 protein bands, detected
by Western blot, and fluorescent bands were destained,
reduced, alkylated, and digested with trypsin (Promega, 6.7
ng/μL) overnight at 37 °C. The tryptic peptides were desalted
using POROS R2 (Applied Biosystems) and analyzed by
nanoLC−MS using TripleTOF 6600 (ABSciex). External
calibration was performed using β-galactosidase digest (AB-
Sciex). The 40 most intense precursor ions from the MS
spectra were selected for tandem mass spectrometry (MS/MS)
analysis. Data were acquired with the Analyst software TF 1.7
(ABSciex). The raw MS and MS/MS data were analyzed using
Protein Pilot software version 5.0 (ABSciex) for protein
identification. The search was performed against the HA and
M1 protein sequences and against the Swissprot viruses
database plus the protein sequences of influenza VLP proteins
HA and M1. Protein identification was considered with an
unused score greater than 1.3 (95% confidence). To detect
modified peptides, data were also analyzed using the
BioPharmaView software version 1.0 (ABSciex) considering a
Met−Aha modification (mass shift of −4.986 Da) with a m/z
tolerance of ±10 ppm.
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