4,506 research outputs found

    Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems

    Get PDF
    We introduce a new method, allowing to describe slowly time-dependent Langevin equations through the behaviour of individual paths. This approach yields considerably more information than the computation of the probability density. The main idea is to show that for sufficiently small noise intensity and slow time dependence, the vast majority of paths remain in small space-time sets, typically in the neighbourhood of potential wells. The size of these sets often has a power-law dependence on the small parameters, with universal exponents. The overall probability of exceptional paths is exponentially small, with an exponent also showing power-law behaviour. The results cover time spans up to the maximal Kramers time of the system. We apply our method to three phenomena characteristic for bistable systems: stochastic resonance, dynamical hysteresis and bifurcation delay, where it yields precise bounds on transition probabilities, and the distribution of hysteresis areas and first-exit times. We also discuss the effect of coloured noise.Comment: 37 pages, 11 figure

    Relating the Cosmological Constant and Supersymmetry Breaking in Warped Compactifications of IIB String Theory

    Get PDF
    It has been suggested that the observed value of the cosmological constant is related to the supersymmetry breaking scale M_{susy} through the formula Lambda \sim M_p^4 (M_{susy}/M_p)^8. We point out that a similar relation naturally arises in the codimension two solutions of warped space-time varying compactifications of string theory in which non-isotropic stringy moduli induce a small but positive cosmological constant.Comment: 7 pages, LaTeX, references added and minor changes made, (v3) map between deSitter and global cosmic brane solutions clarified, supersymmetry breaking discussion improved and references adde

    Phase-Dependent Spontaneous Spin Polarization and Bifurcation Delay in Coupled Two-Component Bose-Einstein Condensates

    Full text link
    The spontaneous spin polarization and bifurcation delay in two-component Bose-Einstein condensates coupled with laser or/and radio-frequency pulses are investigated. We find that the bifurcation and the spontaneous spin polarization are determined by both physical parameters and relative phase between two condensates. Through bifurcations, the system enters into the spontaneous spin polarization regime from the Rabi regime. We also find that bifurcation delay appears when the parameter is swept through a static bifurcation point. This bifurcation delay is responsible for metastability leading to hysteresis.Comment: Improved version for cond-mat/021157

    Green and Fire Resistant Nanocellulose/Hemicellulose/Clay Foams

    Get PDF
    Lightweight polymer foams from synthetic polymers are commonly used in a wide-spread spectrum of application fields. Their intrinsic flammability coupled with restrictions on flame retardant chemicals poses a severe threat to safety. Here, fire resistant foams comprising biobased components capable of replacing petroleum-based foams are investigated. Cellulose nanofibers are combined with 2D montmorillonite nanoplatelets and a native xyloglucan hemicellulose binder, using a water-based freeze casting approach. Due to the silicate nanoplatelets, these lightweight foams self-extinguish the flame during flammability tests. The limiting oxygen index is as high as 31.5% and in the same range as the best fire-retardant synthetic foams available. In cone calorimetry, the foams display extremely low combustion rates. Smoke release is near the detection limit of the instrument. In addition, the foams are withstanding the penetration of a flame torch focused on one side of the specimen (T on surface 800 °C) and structural integrity is maintained. At the same time, the unexposed side is insulated, as demonstrated by a through-thickness temperature drop of 680 °C cm−1. The results represent a tremendous opportunity for the development of fire-safe foams combining excellent sustainability with multifunctional performance

    Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model

    Full text link
    We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of neuronal action potentials, in parameter regimes characterised by mixed-mode oscillations. The interspike time interval is related to the random number of small-amplitude oscillations separating consecutive spikes. We prove that this number has an asymptotically geometric distribution, whose parameter is related to the principal eigenvalue of a substochastic Markov chain. We provide rigorous bounds on this eigenvalue in the small-noise regime, and derive an approximation of its dependence on the system's parameters for a large range of noise intensities. This yields a precise description of the probability distribution of observed mixed-mode patterns and interspike intervals.Comment: 36 page

    A repulsive trap for two electrons in a magnetic field

    Full text link
    We study numerically and analytically the dynamics of two classical electrons with Coulomb interaction in a two dimensional antidot superlattice potential in the presence of crossed electric and magnetic fields. It is found that near one antidot the electron pair can be trapped for a long time and the escape rate from such a trap is proportional to the square of a weak electric field. This is qualitatively different from the case of noninteracting electrons which are trapped forever by the antidot. For the pair propagation in the antidot superlattice we found a broad parameter regime for which the pair is stable and where two repulsive electrons propagate together on an enormously large distance.Comment: revtex, 5 pages, 6 figure

    Evaluating matrix elements relevant to some Lorenz violating operators

    Get PDF
    Carlson, Carone and Lebed have derived the Feynman rules for a consistent formulation of noncommutative QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of the quark level operator (gamma.p - m) in a nucleon. In this paper we calculate the matrix element of (gamma.p - m), using a variety of confinement potential models. Our results are within an order of magnitude agreement with the estimate made by Carlson et al. The constraints placed on the noncommutativity parameter were very strong, and are still quite severe even if weakened by an order of magnitude.Comment: 4 pages, 3 figures, RevTex, minor change

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
    corecore