680 research outputs found

    String Theory and Cosmology

    Get PDF
    We discuss the main cosmological implications of considering string-loop effects and a potential for the dilaton in the lowest order string effective action. Our framework is based on the effective model arising from regarding homogeneous and isotropic dilaton, metric and Yang-Mills field configurations. The issues of inflation, entropy crisis and the Polonyi problem as well as the problem of the cosmological constant are discussed.Comment: 7 pages, plain Tex, no figure

    Modified Gravity on the Brane and Dark Energy

    Get PDF
    We analyze the dynamics of an AdS5 braneworld with matter fields when gravity is allowed to deviate from the Einstein form on the brane. We consider exact 5-dimensional warped solutions which are associated with conformal bulk fields of weight -4 and describe on the brane the following three dynamics: those of inhomogeneous dust, of generalized dark radiation, and of homogeneous polytropic dark energy. We show that, with modified gravity on the brane, the existence of such dynamical geometries requires the presence of non-conformal matter fields confined to the brane.Comment: Revised version published in Gen. Rel. Grav. Typos corrected, updated reference and some remarks added for clarity. 11 pages, latex, no figure

    A review of conventional and emerging technologies for hydrogels sterilization

    Get PDF
    Funding This work was financially supported by Fundaçao ˜ para a Ciˆencia e Tecnologia (FCT), Portugal, through the project STERILAEROGEL – Green method to prepare sterilised biopolymer-based aerogel (POCI01–0145-FEDER-032625) and Strategic Projects FCT-MEC PEst-C/EQB/ UI0102/2019, UIDB/00102/2020 and Programmatic Project UIDP/ 00102/2020 of the CIEPQPF, and UI/05704/2020 of the ciTechCare. C. S. A. Bento acknowledges for PhD grant UI/BD/151008/2021 and M. C. Gaspar acknowledges FCT for the financial support under Scientific Employment Stimulus – Individual and Institutional Calls (CEECIND/ 00527/2017 and CEECINST/00060/2021).Hydrogels are extensively used in the biomedical field, as drug delivery systems, wound dressings, contact lenses or as scaffolds for tissue engineering. Due to their polymeric nature and the presence of high amounts of water in their structure, hydrogels generally present high sensitivity to terminal sterilization. The establishment of an efficient sterilization protocol that does not compromise the functional properties of the hydrogels is one of the challenges faced by researchers when developing a hydrogel for a specific application. Yet, until very recently this aspect was largely ignored in the literature. The present paper reviews the state of literature concerning hydrogels sterilization, compiling the main findings. Conventional terminal sterilization methods (heat sterilization, radiation sterilization, and gas sterilization) as well as emerging sterilization techniques (ozone, supercritical carbon dioxide) are covered. Considerations about aseptic processing are also included. Additionally, and as a framework, hydrogels’ polymeric materials, types of networks, and main biomedical applications are summarily described.info:eu-repo/semantics/publishedVersio

    Self-interacting Dark Matter and Invisibly Decaying Higgs

    Get PDF
    Self-interacting dark matter has been suggested in order to overcome the difficulties of the Cold Dark Matter model on galactic scales. We argue that a scalar gauge singlet coupled to the Higgs boson, which could lead to an invisibly decaying Higgs, is an interesting candidate for this self-interacting dark matter particle. We also present estimates on the abundance of these particles today as well as consequences to non-Newtonian forces.Comment: 4 pages, Revte

    Some Simple Criteria for Gauged R-parity

    Full text link
    We catalog some simple conditions which are sufficient to guarantee that R-parity survives as an unbroken gauged discrete subgroup of the continuous gauge symmetry in certain supersymmetric extensions of the standard model.Comment: 11 pages, UFIFT-HEP-92-22. v2: TeX formatting fixed, no other change

    Minisuperspace Models in M-theory

    Get PDF
    We derive the full canonical formulation of the bosonic sector of 11-dimensional supergravity, and explicitly present the constraint algebra. We then compactify M-theory on a warped product of homogeneous spaces of constant curvature, and construct a minisuperspace of scale factors. First classical behaviour of the minisuperspace system is analysed, and then a quantum theory is constructed. It turns out that there similarities with the "pre-Big Bang" scenario in String Theory.Comment: 35 pages, 2 figures, added additional discussion of gauge fixing and self-adjointness of the Hamiltonian, added reference

    On the Weyl - Eddington - Einstein affine gravity in the context of modern cosmology

    Full text link
    We propose new models of an `affine' theory of gravity in DD-dimensional space-times with symmetric connections. They are based on ideas of Weyl, Eddington and Einstein and, in particular, on Einstein's proposal to specify the space - time geometry by use of the Hamilton principle. More specifically, the connection coefficients are derived by varying a `geometric' Lagrangian that is supposed to be an arbitrary function of the generalized (non-symmetric) Ricci curvature tensor (and, possibly, of other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. In addition to the standard Einstein gravity, such a theory predicts dark energy (the cosmological constant, in the first approximation), a neutral massive (or, tachyonic) vector field, and massive (or, tachyonic) scalar fields. These fields couple only to gravity and may generate dark matter and/or inflation. The masses (real or imaginary) have geometric origin and one cannot avoid their appearance in any concrete model. Further details of the theory - such as the nature of the vector and scalar fields that can describe massive particles, tachyons, or even `phantoms' - depend on the concrete choice of the geometric Lagrangian. In `natural' geometric theories, which are discussed here, dark energy is also unavoidable. Main parameters - mass, cosmological constant, possible dimensionless constants - cannot be predicted, but, in the framework of modern `multiverse' ideology, this is rather a virtue than a drawback of the theory. To better understand possible applications of the theory we discuss some further extensions of the affine models and analyze in more detail approximate (`physical') Lagrangians that can be applied to cosmology of the early Universe.Comment: 15 pages; a few misprints corrected, one footnote removed and two added, the formulae and results unchanged but the text somewhat edited, esp. in Sections 4,5; the reference to the RFBR grant corrected

    Biomonitoring the Vitex gardneriana Shauer (Lamiaceae) toxic effects to shed light on bioactive compounds against a major coconut pest mite.

    Get PDF
    The coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae), is a major pest of coconut plantations (Cocos nucifera L.) worldwide. Here, we conducted a bioguided phytochemical approach using toxicity and repellency bioassays of nonpolar extract and its fractions of Vitex gardneriana Schauer (Lamiaceae) leaves to this pest. Nonpolar crude extract was fractionated by column chromatography using solvents with increased polarity and binary mixtures, resulting in five semipurified groups. The biomonitoring bioassay provided active fractions and led to the isolation and characterization of the bioactive compound squalene, a biosynthetic precursor of 20-hydroxyecdysone, which plays an important role in plant defense against arthropods. The LC50 of the crude extract of V. gardneriana for A. guerreronis was estimated to be 0.185 mg·mL-1 and LC80 = 4.123 mg·mL-1. Also, the extract was highly repellent to this pest for up to 24 h. The fractions of V. gardneriana, and also squalene, caused mortality to A. guerreronis. The potential of V. gardneriana fractions/squalene as biopesticides for controlling A. guerreronis in coconut plantations is discussed herein

    Long-lived charged Higgs at LHC as a probe of scalar Dark Matter

    Full text link
    We study inert charged Higgs boson H±H^\pm production and decays at LHC experiments in the context of constrained scalar dark matter model (CSDMM). In the CSDMM the inert doublet and singlet scalar's mass spectrum is predicted from the GUT scale initial conditions via RGE evolution. We compute the cross sections of processes ppH+H,H±Si0pp\to H^+H^-,\, H^\pm S_i^0 at the LHC and show that for light H±H^\pm the first one is dominated by top quark mediated 1-loop diagram with Higgs boson in s-channel. In a significant fraction of the parameter space H±H^\pm are long-lived because their decays to predominantly singlet scalar dark matter (DM) and next-to-lightest (NL) scalar, H±SDM, NLff,H^\pm\to S_{\text{DM, NL}} ff', are suppressed by the small singlet-doublet mixing angle and by the moderate mass difference ΔM=MH+MDM. \Delta M=M_{H^+}-M_{\text{DM}} . The experimentally measurable displaced vertex in H±H^\pm decays to leptons and/or jets and missing energy allows one to discover the H+HH^+H^- signal over the huge W+WW^+W^- background. We propose benchmark points for studies of this scenario at the LHC. If, however, H±H^\pm are short-lived, the subsequent decays SNLSDMffˉS_{\text{NL}}\to S_{\text{DM}} f\bar f necessarily produce additional displaced vertices that allow to reconstruct the full H±H^\pm decay chain.Comment: 15 pages, 5 figure
    corecore