2,104 research outputs found

    Female Migrants’ Experiences of Labour Market ‘Integration’ in Denmark

    Get PDF

    The DAWGPAWS pipeline for the annotation of genes and transposable elements in plant genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High quality annotation of the genes and transposable elements in complex genomes requires a human-curated integration of multiple sources of computational evidence. These evidences include results from a diversity of <it>ab initio </it>prediction programs as well as homology-based searches. Most of these programs operate on a single contiguous sequence at a time, and the results are generated in a diverse array of readable formats that must be translated to a standardized file format. These translated results must then be concatenated into a single source, and then presented in an integrated form for human curation.</p> <p>Results</p> <p>We have designed, implemented, and assessed a Perl-based workflow named DAWGPAWS for the generation of computational results for human curation of the genes and transposable elements in plant genomes. The use of DAWGPAWS was found to accelerate annotation of 80–200 kb wheat DNA inserts in bacterial artificial chromosome (BAC) vectors by approximately twenty-fold and to also significantly improve the quality of the annotation in terms of completeness and accuracy.</p> <p>Conclusion</p> <p>The DAWGPAWS genome annotation pipeline fills an important need in the annotation of plant genomes by generating computational evidences in a high throughput manner, translating these results to a common file format, and facilitating the human curation of these computational results. We have verified the value of DAWGPAWS by using this pipeline to annotate the genes and transposable elements in 220 BAC insertions from the hexaploid wheat genome (<it>Triticum aestivum </it>L.). DAWGPAWS can be applied to annotation efforts in other plant genomes with minor modifications of program-specific configuration files, and the modular design of the workflow facilitates integration into existing pipelines.</p

    Reference Genome Sequence of the Model Plant Setaria

    Get PDF
    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and \u3e95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with \u3e1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum)

    A yeast gene (BLH1) encodes a polypeptide with high homology to vertebrate bleomycin hydrolase, a family member of thiol proteinases

    Get PDF
    We have purified bleomycin hydrolase from yeast (molecular mass 55 000 Da). Using protein sequence-derived degenerate oligonucleotide primers and amplification by polymerase chain reaction, the yeast gene BLH1 was isolated and characterized. The deduced amino acid sequence (483 amino acids) exhibits surprisingly high homology to vertebrate bleomycin hydrolase (43% identical residues and 22% conserved exchanges). It contains three blocks of sequences found conserved in other members of the thiol proteinase family and thought to be associated with the catalytic centre. BLH1 is non-essential under all growth conditions tested. However, in the presence of 3.5 mg bleomycin/ml medium wild-type cells have a slight growth advantage compared to blh1 mutant cells

    Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the Assisted Automated Assembler of Repeat Families (AAARF) algorithm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher eukaryotic genomes are typically large, complex and filled with both genes and multiple classes of repetitive DNA. The repetitive DNAs, primarily transposable elements, are a rapidly evolving genome component that can provide the raw material for novel selected functions and also indicate the mechanisms and history of genome evolution in any ancestral lineage. Despite their abundance, universality and significance, studies of genomic repeat content have been largely limited to analyses of the repeats in fully sequenced genomes.</p> <p>Results</p> <p>In order to facilitate a broader range of repeat analyses, the Assisted Automated Assembler of Repeat Families algorithm has been developed. This program, written in PERL and with numerous adjustable parameters, identifies sequence overlaps in small shotgun sequence datasets and walks them out to create long pseudomolecules representing the most abundant repeats in any genome. Testing of this program in maize indicated that it found and assembled all of the major repeats in one or more pseudomolecules, including coverage of the major Long Terminal Repeat retrotransposon families. Both Sanger sequence and 454 datasets were appropriate.</p> <p>Conclusion</p> <p>These results now indicate that hundreds of higher eukaryotic genomes can be efficiently characterized for the nature, abundance and evolution of their major repetitive DNA components.</p

    Construction and Homologous Expression of a Maize Adh1

    Full text link

    Revolver is a New Class of Transposon-like Gene Composing the Triticeae Genome

    Get PDF
    Revolver discovered in the Triticeae plant is a novel class of transposon-like gene and a major component of the large cereal genome. An 89 bp segment of Revolver that is enriched in the genome of rye was isolated by deleting the DNA sequences common to rye and wheat. The entire structure of Revolver was determined by using rye genomic clones, which were screened by the 89 bp probe. Revolver consists of 2929—3041 bp with an inverted repeated sequence on each end and is dispersed through all seven chromosomes of the rye genome. Revolver is transcriptionally active, and the isolated full-length cDNA (726 bp) reveals that Revolver harbors a single gene consisting of three exons (342, 88, and 296 bp) and two introns (750 and 1237 bp), and encodes 139 amino acid residues of protein, which shows similarity to some transcriptional regulators. Revolver variants ranging from 2665 to 4269 bp, in which 5′ regions were destructed, indicate structural diversities around the first exon. Revolver does not share identity with any known class I or class II autonomous transposable elements of any living species. DNA blot analysis of Triticeae plants shows that Revolver has existed since the diploid progenitor of wheat, and has been amplified or lost in several species during the evolution of the Triticeae

    On the Tetraploid Origin of the Maize Genome

    Get PDF
    Data from cytological and genetic mapping studies suggest that maize arose as a tetraploid. Two previous studies investigating the most likely mode of maize origin arrived at different conclusions. Gaut and Doebley [7] proposed a segmental allotetraploid origin of the maize genome and estimated that the two maize progenitors diverged at 20.5 million years ago (mya). In a similar study, using larger data set, Brendel and colleagues (quoted in [8]) suggested a single genome duplication at 16 mya. One of the key components of such analyses is to examine sequence divergence among strictly orthologous genes. In order to identify such genes, Lai and colleagues [10] sequenced five duplicated chromosomal regions from the maize genome and the orthologous counterparts from the sorghum genome. They also identified the orthologous regions in rice. Using positional information of genetic components, they identified 11 orthologous genes across the two duplicated regions of maize, and the sorghum and rice regions. Swigonova et al. [12] analyzed the 11 orthologues, and showed that all five maize chromosomal regions duplicated at the same time, supporting a tetraploid origin of maize, and that the two maize progenitors diverged from each other at about the same time as each of them diverged from sorghum, about 11.9 mya

    5Gs for crop genetic improvement

    Get PDF
    Here we propose a 5G breeding approach for bringing muchneeded disruptive changes to crop improvement. These 5Gs are Genome assembly, Germplasm characterization, Gene function identification, Genomic breeding (GB), and Gene editing (GE). In our view, it is important to have genome assemblies available for each crop and a deep collection of germplasm characterized at sequencing and agronomic levels for identification of marker-trait associations and superior haplotypes. Systems biology and sequencing-based mapping approaches can be used to identify genes involved in pathways leading to the expression of a trait, thereby providing diagnostic markers for target traits. These genes, markers, haplotypes, and genome-wide sequencing data may be utilized in GB and GE methodologies in combination with a rapid cycle breeding strategy
    corecore