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ABSTRACT: The interfacial tension between two liquids is the free energy per unit
surface area required to create that interface. Interfacial tension is a determining factor
for two-phase liquid behavior in a wide variety of systems ranging from water flooding
in oil recovery processes and remediation of groundwater aquifers contaminated by
chlorinated solvents to drug delivery and a host of industrial processes. Here, we
present a model for predicting interfacial tension from first principles using density
functional theory calculations. Our model requires no experimental input and is
applicable to liquid/liquid systems of arbitrary compositions. The consistency of the
predictions with experimental data is significant for binary, ternary, and multi-
component water/organic compound systems, which offers confidence in using the model to predict behavior where no data
exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where
measurements are technically too difficult, time consuming, or impossible.

■ INTRODUCTION

The interfacial tension (IFT) is the free energy per unit surface
area that is required for creating an interface between two
condensed phases. The IFT is an important factor in a number
of applications related to surfactant injection for improved oil
recovery,1 emulsion stability,2,3 transport of organic contami-
nants through soil,4,5 and ensuring water quality in aquifers,
which includes the ability to predict the behavior of dense
nonaqueous phase liquids such as chlorinated solvents.5 The
IFT influences the capillary pressure between two nonmiscible
fluids, which in turn impacts how fluids flow in porous media.
Other applications where IFT plays a major role include micelle
formation and other self-assembly processes of nanoparticles or
colloidal particles at liquid/liquid interfaces.6 Self-assembly at
liquid/liquid interfaces is an important process in materials
science and technology, which is highly relevant to food
supplements and cosmetics. The IFT also plays an important
role in pharmaceutical applications such as drug delivery,3,7,8

where surfactants help to form microemulsions, which
improves the bioavailability of lipophilic or amphiphilic drugs.
Despite the wide range of applications, no general first-

principles method for predicting IFT has been developed until
now. In the literature, empirical models that are based on input
from experimental data9,10 and models that use molecular
dynamics (MD)11 have been reported. The empirical methods9

are most commonly extrapolated from mutual solubilitites,12,13

but this approach makes it difficult to generalize from binary
systems to ternary or more complex systems. Classical force field
MD has been used to estimate interfacial tension for several fluid
systems14−17 and tends to give reasonable results. On the other
hand, MD methods depend on accurate model potentials, which

are not always readily available. Furthermore, each MD simulation
is time consuming, and a new simulation is required every time the
composition or temperature is changed. The MD approach is also
less straightforward for very low IFT values, 1−5 mN/m.16

In this paper, we present a method for predicting the IFT
between two liquid phases of arbitrary composition using
density functional theory (DFT) calculations combined with
the COSMO-RS implicit solvent model. This means that no
experimental input is required other than what has already been
used for parametrizing COSMO-RS. It is important to note that
no IFT data are used in the COSMO-RS parametrization. Our
method is independent of the number of components in the
system, and it is thus immediately applicable to multicomponent
systems without modification. To the best of our knowledge, this
is the first general model presented for predicting liquid/liquid
IFT, which is based on quantum chemistry. In contrast to MD
approaches, our method requires only a short series of DFT
calculations to capture the most important conformers for each
component in the system. No new DFT calculations are required
when the composition or temperature is changed, only COSMO-
RS calculations are required, and these generally take less than a
minute on a standard PC. The method is thus efficient as a
screening technique, for example, for testing the effectiveness of
surfactants in reducing IFT.

■ METHODS

The COSMO-RS implicit solvent model is fundamentally
different from other implicit solvent models used in quantum
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chemistry. Molecules are placed in a reference state that is a
perfect conductor. This places screening charge density, σ, on
the molecule surface. The screening surface, that is, the
COSMO surface or as it is also called, the σ surface thus reflects
the properties of the screened molecule (Figure 1) and is used as

the base for further calculations of solvent interactions. By using a
universal reference state for all molecules, it is possible to change
the solvent composition without making any new DFT
calculations. COSMO-RS provides free energy properties for
liquids of arbitrary composition and can be used for predicting pKa
values, solubilities, phase diagrams, etc.18−24 A more detailed
description of COSMO-RS can be found elsewhere.25−27 The
local solute/solvent interactions of the σ surfaces enable a
molecule to interact with two different solvents over different areas
on its surface, as shown in Figure 1.
All molecules investigated in this paper were taken from the

COSMOtherm databases whenever they were available. All
DFT calculations were performed using the Turbomole
package,28,29 Version 6.5 with the Becke−Perdew (BP)
exchange−correlation functional30,31 and Ahlrich-type basis
sets.32,33 The f latsurf module of the COSMOtherm program34

was used together with the BP_TZVP_C30_1301 and
BP_TZVPD_FINE_HB2012_C30_1301 parametrizations to
calculate the free energies of transferring molecules from one of
the phases to an interface between two fluids.

The COSMO-RS f latsurf module calculates the solvation
contribution to the change in free energy for transferring a
molecule from a bulk phase to a flat and structureless two-phase
interface. For each position and orientation, the difference in
free energy compared with the bulk phase is calculated as well
as the corresponding interfacial area taken up by the molecule.
The total change in free energy, denoted Gtot, is determined
from the partition function of all surface contacting positions
and orientations, and the corresponding expectation value of
the replaced interfacial area, Aav, is calculated. For COSMO-RS
interactions, the COSMO surface area for water is scaled down
by a factor of ∼1.5.35 For our IFT calculations (eqs 3−5), we
used the nonscaled area for water because it is the physical area
that is occupied at the interface that is relevant.
The interfacial tension between two phases, A and B, was

determined using the following procedure: First, we calculated
the partitioning of all components into the two phases using
COSMO-RS. We then created a virtual surface phase, S, in the
spirit of Guggenheim,36 and placed it between the bulk phases.
It thus has two interfaces, both of which contribute to the total
IFT of the system. We performed f latsurf calculations to obtain
transfer energies from both phases to the surface phase. We
calculated the (non-normalized) surface mole fraction, θ′(i), of
component i at the interface using

θ′ = +− −→ →i x i e x i e( )
1
2

[ ( ) ( ) ]G i RT G i RT
A

( )/
B

( )/tot,A S tot,B S

(1)

where xA(i) represents the mole fraction of component i in
phase A and Gtot,A→S(i) denotes the f latsurf energy for
transferring component i from phase A to the interface
between phase A and the surface phase, S.
We then normalized to obtain surface mole fractions, θ(i)
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Any f latsurf calculation in COSMOtherm requires an IFT value
as input because the calculated transfer free energies for
bringing molecules to the interface depends on the IFT of the
structureless surface. As a starting value, we used 30 mN/m for
all calculations.
The contribution to the IFT for component i in phase A can

be calculated from
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where Aav,A→S(i) represents the expected area of the molecular
cross section at the interface between A and S. If the bulk
phases and surface phase were in perfect equilibrium, the IFT
could equivalently be calculated from
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Because the composition of the surface phase S is constrained by
f latsurf transfer energies from two phases, A and B (eqs 1 and 2),
the results using eqs 3 and 4 differ slightly but either expression
gives good results for the IFT (Figure S1, Supporting Information).
A combined expression, where each contribution has equal weight,
turns out to give slightly better agreement with experimental results
in order to minimize the mean absolute deviation between the
experimental and predicted IFT values. Hence the total contri-
bution to the IFT for phase A is considered to be

Figure 1. Molecular structure (top), COSMO surfaces (middle), and
COSMO images generated with f latsurf (bottom) for water and
aniline. In the molecular structure, O is represented by a red sphere, H
in white, C in gray, and N in blue. In the COSMO surfaces, red to
yellow represents zones where the screening charge is positive, dark to
light blue is negative, and green is neutral. The f latsurf COSMO
surfaces show the molecule’s position with respect to a water/aniline
interface. The water phase is represented by dark gray and the aniline
phase by light gray.
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The contribution for phase B is calculated analogously. The
IFTA and IFTB values are generally different from the input
IFT value used in the f latsurf calculations. We therefore iterate
with the IFT input values for the AS and BS interfaces, which
leads to new Gtot energies and thus new values for the sur-
face mole fractions. By iterating eqs 1, 2, and 5 with a simple
damped linear expression, we obtained self-consistent solu-
tions for IFTA and IFTB. The self-consistency is needed
to maintain thermodynamic consistency between the surface
phase and the bulk phases in terms of composition, IFT, and
transfer free energies. Details are presented in the Supporting
Information.
The predicted IFT for the interface, using the self-consistent

values for IFTA and IFTB, is thus simply

= +IFT IFT IFTA B (6)

In this study, the IFT value is considered to be converged
if the difference of two subsequent iterations is less than
0.02 mN/m.
Error Estimation. Infinite dilution activity coefficients, that

is, free energies of transfer of a molecule to another liquid, are
typically predicted by COSMO-RS with a root-mean-square
deviation of 0.5 ln-units, which corresponds to 1.2 kJ/mol.37,38

The molecules in our evaluation data set have an average
surface area of ∼1.5 nm2. This results in a value of 1.3 mN/m
for COSMO-RS error in free energy per surface area. The
predicted IFT in our method results from a sum of IFTA and
IFTB, and we should therefore apply a factor of 2

1/2 to the value
of 1.3 mN/m to get an error estimate of ∼2 mN/m, which is a
lower limit of the expected error of the method. The additional
error resulting from the assumptions made in the derivation of
our IFT equations cannot be simply estimated. It should be
noted that this error can be positive or negative and has to be
considered as almost independent of the value of the
experimental IFT. Therefore, it can cause large relative errors
for the prediction of small IFT values, and it even can result in
the prediction of negative IFTs, which obviously should be
corrected to an estimate of 0 mN/m afterward.

■ RESULTS

Binary Water/Organic Systems. The predicted IFT
values for binary systems are compared with experimental
data5,39 in Figure 2. The agreement is very good for both the
TZVPD-fine and TZVP parametrizations, especially consider-
ing that no IFT data have been used in the parametrization of
COSMO-RS. The points are narrowly scattered around the
y = x line, which highlights the significant prediction power of
the model with no need for linear regression. Thus, for binary
systems, our method gives very good agreement with
experimental data. There is no loss of accuracy in absolute
terms for low IFT values, which is an improvement over MD
methods.16 In particular, the TZVPD-fine performs well for the
low IFT values (Figure 2). The results for binary systems
are also compiled in Table 1 and show that the TZVPD-fine param-
etrization performs slightly better than TZVP. The TZVPD-fine
parametrization was therefore used for investigating the multi-
component systems.

It is also instructive to compare the errors in predicted IFT
for various functional groups, and we have compiled them in
Table 2. Some predictions for low IFT of ∼5 mN/m are
significantly underestimated (Figure 1), and these come from
organic compounds for which the most polar group is the keto
group (>CO). Their mean error is −6.6 mN/m. On the

Figure 2. Experimental and predicted interfacial tension for binary
water/organic systems. The straight lines in the graphs are the y = x
lines. Table 1 lists the molecules investigated. The mean absolute
deviation (MAD) for each method is listed in the graphs.
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other side of the spectrum, there is another class of compounds
for which the IFT is overestimated significantly, by 5.9 mN/m.
These are molecules for which the most polar group is a phenyl.
These have a predicted IFT of about 40 mN/m (Figure 1).
In the case where several functional groups are present on a
single organic molecule, we found that the most polar group
determines the error. This makes sense because the most polar

group of the organic compound is the one responsible for
interaction with the water phase and the lowering of the IFT.
This means that for acetophenone the presence of the keto
group determines the sign of the error, not the phenyl group.
These systematic errors probably stem from the COSMO-RS
parametrization of the interactions.
For the TZVPD-fine level, the COSMO-RS method predicts

the following systems to be miscible: water/cyclohexanone,
water/2-butanol, and water/methyl acetate. Our method
predicts the IFT to be 0 mN/m for these systems (Table 1),
and thus, the composition of the surface phase is identical to
the bulk phase(s). This shows that our method is
thermodynamically consistent in the low IFT limit.

Ternary Systems. A comparison between experimental
data39 and our model for four ternary systems is shown in
Figure 3. In all cases, the data are plotted as a function of the
mole fraction of the most surface-active component, where
partitioning into the aqueous and organic phases is taken into
account. The very good agreement between experimental data
and our predictions for the IFT as a function of concentration
suggests that our method can capture the surface activity and
general surfactant behavior for nonionic surfactants. The method
is still limited by how well COSMO-RS describes solubilities and
partitioning of various components into the two phases.
Few other methods can account for how the partitioning of

the surface active compound changes when the concentration is
increased and its mole fraction in either of the bulk phases or
the surface phase becomes significant. Our method handles all
of this automatically. The largest deviation from experimental
results, observed in Figure 3, is for the water/propanol/heptane
system, where COSMO-RS overestimates the affinity of propanol
to water compared to heptane. The partition of acetic acid
between water and benzene is also slightly skewed toward the
water phase and could result from acetic acid dimerization. This
would increase the solubility in the organic phase compared to
water and would not be taken into account. In all cases, there is
good agreement for a wide range of concentrations, particularly
for comparison of IFT with surfactant mole fraction in the
organic phase. The surface mole fractions we determine for
each system also allow us to quantify surface enrichment of the
surfactant molecule (Table S1, Supporting Information) and
this gives a picture of the surface composition and how it differs
from the bulk phases. We have previously calculated surface
enrichment at an oil/water interface for several substituted
benzenes using the f latsurf module.40 Our new procedure
predicts surface enrichment in a more self-consistent manner
thanks to the introduction of a surface phase where the
composition is different from the bulk phases. The COSMO-
RS interactions between surface-active molecules with a low

Table 1. Experimental5,39 and Predicted Interfacial Tension
(IFT) for Binary Water/Organic Systemsa

organic phase
IFT

(experiment)
IFT

(TZVP)
IFT

(TZVPD-fine)

n-heptane 50.1 51.2 50.3
cyclohexane 50.0 48.6 47.4
hexane 49.7 50.8 49.9
CS2 48.6 48.9 46.2
tetrachloroethylene (PCE) 45.9 46.9 45.2
CCl4 (PCM) 44.3 46.5 44.7
1,1,1-trichloroethane 36.6 41.8 40.3
ethylbenzene 36.5 34.5 41.7
trichlorethylene (TCE) 36.9 40.7 37.9
1,2-dimethylbenzene 36.4 41.9 40.9
1,4-dimethylbenzene 35.7 42.9 42.1
1,3-dimethylbenzene 35.5 42.8 42.0
toluene 35.4 41.2 40.4
benzene 33.8 39.2 38.5
CHCl3 30.8 30.2 30.6
chlorobenzene 30.3 40.3 39.2
cis-dichloroethylene (cis-
DCE)

30.0 34.6 30.1

1,1,2-trichloroethane 29.6 32.0 29.8
CH2Cl2 28.9 29.2 27.3
1,2-dichloroethane 28.4 32.5 28.7
trans-dichloroethylene (trans-
DCE)

25.5 36.5 32.5

nitrobenzene 25.2 28.7 22.1
diisopropylether 17.7 11.3 18.0
1-butylacetate 14.5 8.6 8.6
2-ethyl-1-hexanol 13.3 14.7 13.4
acetophenone 13.2 8.2 3.9
diethyl ether 11.0 7.0 7.2
4-methyl-2-pentanone 10.4 3.4 4.1
nitromethane 9.3 16.2 4.6
1-octanol 8.1 9.2 8.1
1-heptanol 7.7 8.2 6.7
aniline 6.9 15.7 9.0
1-hexanol 6.6 7.1 5.9
ethyl acetate 6.4 2.1 1.6
1-pentanol 4.6 5.5 3.9
cyclohexanone 3.9 −3.2b 0.0c

cyclohexanol 3.7 4.6 2.7
2-butanol 2.0 4.2 0.0c

1-butanol 1.8 3.3 2.2
methyl acetate 1.6 0.6 0.0c

mean deviation -0.7 0.3
mean absolute deviation 3.2 2.6
maximum absolute deviation 11.7 9.3
aAll IFT and deviations from experiment are reported in mN/m.
The predicted values are plotted as a function of the experimental data
in Figure 1. bThe single point with negative IFT is not shown in
Figure 2. cThe TZVPD-fine method predicted these binary systems
to be completely miscible and our method predicted the IFT to be 0.
These points are excluded from the statistical analysis and from
Figure 2.

Table 2. Errors in Binary Organic Phase/Water IFT for
Various Functional Groupsa

functional group mean deviation

>CO −6.6
−NO2 −3.9
C−O−C −1.7
alkane −0.9
OH −0.5
C−Cl 1.1
−NH2 2.1
−C6H5 5.9

aIn the case of two functional groups, the most polar one is listed.
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bulk phase mole fraction and a high surface mole fraction are
taken into account.
Multicomponent System: Mixtures of Dense Nonaqueous

Phase Liquids (DNAPL).We obtain a good agreement between

experimental data5 and predicted behavior, even for an organic
phase with three or four components (Figure 4). We predict
more or less linear dependence on concentration, such as for
linear mixing theory. The results again demonstrate the

Figure 3. Experimental and predicted IFT for some ternary water/surfactant/organic systems as a function of surfactant concentration. Here,
surfactant refers to the most surface active molecule in each ternary mixture. The TZVPD-fine parametrization was used.
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strength and generality of our method. The average relative
error is 14% in Figure 4a and 19% in Figure 4b. The accuracy is
comparable to what is obtained using empirical methods for
these systems.5 The presence of trans-dichloroethylene (trans-
DCE) explains one of the largest deviations of the predictions
from experimental results (Table 1). Our method can be used
to gain understanding and for predicting behavior in organic/
aqueous systems. For example, chlorinated organic contami-
nants migrate in soil, where the IFT between water and the
DNAPL phase is the main control on capillary flow. Changes in
composition, partitioning, and temperature can be taken into
account in a thermodynamically consistent manner. This would
prove useful for being able to predict changes in behavior
throughout the contaminated site as the composition of the
fluids varies spatially and evolves with time.41 The model would
be particularly useful for real groundwater sites, where surface-
active molecules are also present, to avoid the complications
inherent with empirical methods.

■ CONCLUSION AND OUTLOOK
We have developed a method for predicting the interfacial
tension between two liquid phases of arbitrary composition

using only density functional theory and the implicit solvent
model COSMO-RS, which allows partial implicit solvation in
two adjacent phases. The implicit solvation method is able to
describe liquid/liquid IFT accurately with little computational
effort. The method is fast, reliable, and requires no experimental
input data. The IFT values predicted by the model agree well
with experimental binary, ternary, and multicomponent systems.
The robustness of our method suggests possibilities for

predicting interfacial tension in liquid/gas and liquid/solid
systems as well. This would allow prediction of the surface
tension of a liquid, where a lot of experimental data exists for
comparison. It would also open up many new areas of
application, including liquid/gas interfacial tension predictions,
which are quite important, for example, for CO2 storage42,43

and CO2-enhanced oil recovery44 as well as contact angle
predictions on solid substrates, which are relevant for
separating hydrophobic compounds from mixed phase systems.
The possibility of deriving IFT for organic compounds in
general makes it possible to predict behavior and design specific
surfaces for self-assembly processes that are based on interplay
between liquid and solid interfacial tensions. The importance of
solid/liquid IFT has also recently been demonstrated for
biomineralization rates on polysaccharide templates, where the
surface free energy of the polysaccharide/water interface is a
determining factor for the nucleation rate of the calcite mineral.45

Although standard COSMO-RS treatment works well for
neutral phases, we are working on generalizing our method to
handle ionic species. If ions are present in the system, the
surface phase would generally be charged and the degree of
charge would depend on the affinity of the ions for the surfaces
(eqs 1 and 2). Ability to also treat charged species would open
new possibilities for predicting how the presence of ions in the
aqueous phase influences IFT.46−48 It would make it possible to
predict IFT in more complicated systems, including ionic liquids.
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