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Here we propose a 5G breeding approach for bringing much-

needed disruptive changes to crop improvement. These 5Gs

are Genome assembly, Germplasm characterization, Gene

function identification, Genomic breeding (GB), and Gene

editing (GE). In our view, it is important to have genome

assemblies available for each crop and a deep collection of

germplasm characterized at sequencing and agronomic levels

for identification of marker-trait associations and superior

haplotypes. Systems biology and sequencing-based mapping

approaches can be used to identify genes involved in pathways

leading to the expression of a trait, thereby providing diagnostic

markers for target traits. These genes, markers, haplotypes,

and genome-wide sequencing data may be utilized in GB and

GE methodologies in combination with a rapid cycle breeding

strategy.
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Introduction
Dramatic and rapid climate change will cause extreme

weather, including droughts, floods and other disasters.

Food production will suffer greatly from these changes.

The nearly 80 percent of the world’s population that are

poor and live in rural areas typically rely on local agricul-

ture for their survival [1]. It has been predicted that, on

average, global yields of major crops will be reduced 6.0%

in wheat, 3.2% in rice, 7.4% in maize, and 3.1% in soybean

for every degree Celsius increase in global mean
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temperature [2]. In this regard, the CGIAR system

(https://www.cgiar.org/) initiated a ‘Two Degree Initia-

tive for Food and Agriculture’. This initiative is targeted

on assisting �200 million small scale food producers

across the globe to adapt at the speed and scale

needed for the current pace of climate change. Improving

access to climate-smart technologies and practices,

including this development of climate-resilient

high yielding varieties and their rapid availability to

farmers’ fields, will provide an opportunity to achieve

climate smart solutions [3].

Crop improvement for food and nutritional security,

especially in the context of continuous population growth

and such challenges as climate change and water scarcity,

have become important global concerns [4��]. Facing

these threats, current crop breeding strategies will not

yield a sufficient rate of crop improvement to meet

demands in the short-term or long-term future. Hence,

we propose a 5G breeding strategy to dramatically accel-

erate crop genetic improvement. The 1st G is Genome

assembly for each crop species, the 2nd G is Germplasm

characterized at genomic and agronomic levels, the 3rd G

is Gene function identification, the 4th G is Genomic

breeding methodologies, and the 5th G is Gene editing

technologies (Figure 1).

In the following sections, we describe the 5Gs for enhanc-

ing crop improvement. We conclude with a discussion of

the current challenges and opportunities for integrating

the 5Gs into crop improvement.

1st G: Genome assembly
Advances in next-generation sequencing (NGS) technol-

ogies coupled with improved genome assembly algo-

rithms have facilitated the de novo assemblies of >264

plant genomes, including such crops as rice, maize, wheat,

barley, soybean, cotton, sorghum, tomato, pigeonpea,

chickpea, and groundnut. The quality of these genome

assemblies varies tremendously, from nearly finished

genomes to draft genomes with hundreds of unoriented

sequence scaffolds. A few meet the platinum genome

standard, including assemblies with full-chromosome

scaffolds and haplotypes resolved across the entire

genome, preferably including strong links to the genetic

map. However, most plant genome assemblies are draft

genomes. Recent advancements in sequencing technolo-

gies, particularly long read generation and physical map

linkages, can now often generate chromosome-scale, fully
www.sciencedirect.com
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phased diploid genome assemblies for any species at the

platinum genome level [5].

The availability of a genome assembly provides an oppor-

tunity to develop genomics tools and technologies for

such applications as trait discovery and molecular breed-

ing. All genetic variation can be described, including

SNPs, insertions, deletions, transversions, copy number

variations and epigenetic changes [6]. These variants are

useful in the development of customized SNP arrays [7],

that can be utilized for development of saturated genetic

maps and QTL identification. Sequence variant informa-

tion defines haplotypes [8], which can then be employed

for overcoming or taking advantage of linkage disequilib-

rium in a breeding program [9]. Genome assembly infor-

mation is also vital for developing a gene expression atlas,

proteome maps, metabolome maps, and epigenome

maps.

With the ongoing and deep reductions in sequencing

costs, large-scale re-sequencing projects have been initi-

ated in several crops. For instance, 3010, 994 and

429 germplasm accessions have been re-sequenced in

rice [10��], pearl millet [11��], and chickpea [12], respec-

tively. Such projects generate ‘big data’ that pose storage

and computational challenges. These challenges include

compilation, curation, complex data analyses, visualiza-

tion, retrieval and sharing [13]. To accelerate use of

genome sequence information in next-generation breed-

ing, customized informatics platforms are needed. In this

context, some initiatives/platforms such as SNPSeek (for

rice) (https://snp-seek.irri.org/_snp.zul), Genomic Open-

source Breeding Informatics Initiative (GOBII) (http://

cbsugobii05.tc.cornell.edu/wordpress/) and Excellence in

Breeding Platform (EiB) (https://excellenceinbreeding.

org/) have become available. These platforms will be

vital to breeders for mining superior alleles/haplotypes,
www.sciencedirect.com 
thus identifying the most-suitable parental lines for

breeding populations.

2nd G: Germplasm characterization
During the course of crop domestication and breeding,

cultivar genetic diversity is narrowed for all traits [14], but

national and international ‘genebanks’ (germplasm repos-

itories/germplasm banks) provide a rich source of diverse

alleles that may be vital for future crop improvement.

The �1750 plant germplasm banks worldwide hold �7.4

million accessions (www.fao.org), but <2% of these mate-

rials have been used as plant genetic resources (PGRs),

although these few uses have led to major crop improve-

ments [15��]. One of the reasons behind this limited use

of PGRs is the overwhelming number of accessions that

have no trait or other genetic information. Therefore, we

propose characterization of as many accessions as possible

at both genomic and agronomic levels. If the phenotyping

is performed at specific nursery locations, and with com-

munity-established criteria, the provided information will

allow deep genome wide association studies (GWAS) and

identification of GXE effects. This provides the informa-

tion to determine the potential agronomic value of par-

ticular alleles and accessions that will allow informed

decision-making in breeding programs.

While NGS-based approaches have allowed comprehen-

sive sequencing of large germplasm collections in several

crops, field phenotyping lags dramatically. For instance,

whole-genome re-sequencing (WGRS) has investigated

3010 rice accessions [10��], while genotyping-by-

sequencing (GBS) has been utilized to characterize

44 624 wheat breeding lines [16�] and 20 000 wild and

domesticated barley accessions [17]. These studies are

initial examples of how genomics and informatics tech-

nologies can characterize large crop germplasm collec-

tions [18]. These studies are providing genome-wide
Current Opinion in Plant Biology 2020, 56:190–196
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variant information and insights on population structure,

crop domestication, and so on. However, for mining

useful genetic information, it is imperative to phenotype

the collections. NGS technologies together with some

phenotyping have been utilized in a few crops for iden-

tification of marker-trait associations, including rice [19�],
foxtail millet [20], pigeonpea [21�], pearl millet [11��],
cotton [22], rapeseed [23], chickpea [12] and grape [24].

These studies have provided information on the genetic

architecture of agriculturally important traits and the

identification of valuable alleles for morphological, agro-

nomic, developmental and quality-related traits. In the

future, sequencing of entire germplasm collections pres-

ent in genebanks and association with phenotypes should

be a primary component for all crop-breeding programs.

Large-scale germplasm characterization also provides

information on the presence of haplotypes at a particular

locus for a given trait that can be used in haplotype-based

breeding strategies ([25��], see later) or the genomic

selection approach. Similarly, deleterious effect muta-

tions (genetic load) can also be identified [26], and then

can be purged by marker-assisted selection or gene edit-

ing, as suggested by Johnsson et al. [27�]. Eventually,

superior parental lines will be identified with the best

alleles at each locus, including minimum genetic load,

and introduced into breeding programs with a plan to

optimize the best allelic combinations. As an early step

towards this optimal goal, current haplotype information

can be used to select parents for nested association

mapping (NAM) and multi-parent advanced generation

inter-cross (MAGIC) populations for high-resolution

gene:trait discovery.

Recent advances in genomics have led to the develop-

ment of various sequencing-based rapid trait mapping

approaches such as BSR-Seq [28], MutMap [29], QTLseq

[30] and Indel-seq [31]. NGS technologies have enabled

modification and improvement of traditionally tricky,

time-consuming bulked segregant analysis (BSA, [32])

into rapid and whole-genome sequence-based high-reso-

lution trait mapping [33�]. Due to the availability of

genome assemblies, inexpensive high-throughput WGRS

pipelines have become available, so that the use of

sequence-based trait mapping approaches has become

possible in several crop species. Following this approach,

sequencing-based trait mapping can be broadly grouped

into two classes: i) trait mapping through pooled sequenc-

ing of populations, and ii) trait mapping through

complete sequencing of populations. Several examples

of NGS-based trait mapping have been reported in crops

[34]. This kind of trait mapping has several advantages

over traditional marker-based mapping. For instance, in

addition to taking much less time, these approaches

identify genes or even quantitative trait nucleotides

(QTN) for a given trait. In several cases, such QTNs

have been converted into diagnostic markers. We believe
Current Opinion in Plant Biology 2020, 56:190–196 
that genes and markers identified by using these

approaches will have a uniquely high prediction/diagnos-

tic power for breeding applications.

3rd G: Gene function identification
Using a range of functional genomics and trait mapping

approaches, a large number of candidate genes with associ-

ated molecular markers for traits of interest have been

identified in many crops. For instance, various -omics plat-

forms were established in the past that have allowed the

functional characterization of about 2296 genes controlling

major traits in rice [35,36].However, inmostcrops, thegreat

majority of candidate genes, identified through transcrip-

tomic approaches and/or mapping, are far from confirma-

tion. Moreover, the molecular mechanisms of their poten-

tial agronomic values need to be understood in detail.

Systems Biology is an emerging holistic approach that

proposes full understanding of biological systems by

combining -omics approaches such as genomics, tran-

scriptomics, epigenomics, proteomics, and metabolomics,

together with modeling and high-performance computa-

tional analysis [37�]. In brief, systems biology is the study

of an organism and/or trait, viewed as an integrated and

interacting network of genes, proteins, and biochemical

reactions, including the inputs from various internal and

external environments. One goal of systems biology is to

discover emergent properties derived from molecular

interactions that will further our understanding of the

entirety of processes that occur in a biological system. In

furtherance of this goal, gene expression atlases [38–42],

epigenome maps [43–45], proteome maps [46–48] and

metabolome maps [49–51] have been developed in some

crop species. Availability of these resources will acceler-

ate the use of systems biology approaches to understand

the molecular mechanism of complex traits such as

drought tolerance [52] or heterosis [53]. Once traits are

associated with particular pathways, and superior alleles

identified, then breeders can employ a deeper under-

standing of plant biology to predict parental and allelic

combinations that will uncover improved agronomic

traits.

4th G: Genomic breeding (GB)
Genomic breeding involves approaches that use multi-

omics data, knowledge resources, genes and technologies

generated by genomics research for breeding the gen-

omes to enhance crop breeding programmes. [35].

Although some methods of GB such as marker-assisted

selection (MAS), marker-assisted backcrossing (MABC)

and marker-assisted recurrent selection (MARS) have

been used for breeding in several crops, it is important

to have GB methodologies well-integrated into most or all

crop breeding programs. In addition to above-mentioned

GB methodologies, some new approaches such as forward

breeding (FB), haplotype-based breeding (HBB) and

genomic selection (GS), coupled with speed breeding
www.sciencedirect.com
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(SB), have also been suggested for enhancing the preci-

sion, efficiency and rate of acquired genetic gain in crop

breeding [34]. While diagnostic markers associated with

genes and major effect QTL are required for MAS,

MABC and FB, superior haplotypes at a given locus for

a target trait need to be identified for HBB. The GS

approach, in contrast, does not need markers specifically

associated with a trait because breeding lines are selected

for crossing and advancing generations based on genomic-

estimated breeding values calculated from genome-wide

marker data.

Considering the breeding objectives, any of above-men-

tioned GB approaches can be chosen for crop improve-

ment. For example, if breeders need to select parental

lines or introgress some major effect QTL for a target

trait, MAS and MABC approaches can be used. MABC is

useful to introgress a few loci (<10) for improving elite

varieties. This approach has been extensively used to

develop a large number of breeding lines for commercial

release in public and private sectors. The FB approach

will be the best option when early generations of segre-

gating populations (e.g. F2 generations) are used to

advance plants carrying the target QTL/gene. The

MARS approach is useful to introgress from 10 to 40 loci

through intercrossing elite � elite parents to develop

superior lines with an optimum combination of superior

alleles [34].

Recent re-sequencing of germplasm collections in a few

crops has facilitated identification of a small number of

strong marker-trait associations and haplotypes for target

traits [54,55]. ‘Haplotype assembly’ was proposed as one

new approach for developing improved crops through

assembling superior haplotypes of the targeted traits

[25��]. ‘Superior haplotypes’, in which the phenotypic

performance of the group of individuals sharing a haplo-

type (‘specific haplotype group’), can be identified. The

identified superior haplotypes then can be utilized in the

breeding program through haplotype-assisted breeding.

GS is an approach using genome-wide selection with a

large number of markers [56]. GS works upon defined

‘genomic estimated breeding values’ (GEBVs) that are

calculated from the genotypic and phenotypic dataset of a

‘training population.’ This approach has a higher accuracy

of prediction of elite genetic materials in the initial

generations and permits shorter breeding cycles. GS,

reviewed by Crossa et al. [57�], has been extensively used

in several crops. Very recently, Watson et al. [58��] intro-

duced the concept of ‘speed breeding’ by giving plants

light for 22 hours and dark for only 2 hours. Speed breed-

ing shortens generation times, and thus has been pro-

posed or is now being used for many crops [59]. In fact,

speed breeding has also been suggested to be coupled

with GS in a process called SpeedGS, for rapid develop-

ment of new breeding lines [1]. GS combined with
www.sciencedirect.com 
superior haplotypes (Haplo-GS) is another new and prom-

ising approach for the rapid development of new breeding

lines.

5th G: Gene editing (GE)
GE has emerged as a powerful approach for improving

plant performance and the development of various abiotic

and biotic stress tolerance lines. With the recent discovery

of Cas9 guide RNA and availability of functional geno-

mics data coupled with advances in bioinformatics pipe-

lines, targets are being identified and subjected to editing.

A large number of genes with significant phenotypic

effects have been cloned and functionally characterized.

As a result, GE has been used to generate useful traits in

such crops as rice, maize, wheat, sugarcane, soybean,

potato, sorghum, orange, cucumber, tomato, flax, and

cassava, for traits like herbicide resistance, drought toler-

ance, thermo-sensitive genic male sterility, disease resis-

tance and altered product quality, including some in the

process of commercial release [60]. For instance, Oliva

et al. [61] edited promoters of SWEET11, SWEET13 and

SWEET14 at effector-binding elements recognized by

the pathogen Xanthomonas oryza pv oryzae, a causal agent

for rice bacterial blight. These experiments generated

rice plants that are broadly resistant to the pathogen. To

enhance the durability and management of resistance,

Eom et al. [62] developed a kit to trace the disease, its

virulence and resistance alleles. However, the steward-

ship of gene-edited lines in combination with an appro-

priate deployment strategy is essential to meet environ-

mental health and safety standards. There remains a lack

of clarity as to the GMO or non-GMO status of such

germplasm in many countries [63]. It is anticipated that

legislation and a better-educated public will soon allow

the benefits of this research to reach the farming commu-

nity [64].

It is also important to mention that the GE approach is not

only useful to create novel alleles, it can also be used for

the promotion of superior alleles [65] and removal of

deleterious effect alleles [27�] identified through large-

scale sequencing efforts. Furthermore, it has been sug-

gested that a reverse domestication approach could be

pursued for new crops or current crops by editing genes

related to domestication traits in wild species. This could

provide crop diversification and make available superior

lines with enhanced stress resistances. As this approach

may require several cycles of editing and line fixation,

‘ExpressEdit’ approaches that combine speed breeding

with GE have been suggested [1].

Conclusions and prospects
Although components of the described 5Gs are being

used in public and private crop improvement programs in

several developed countries, comprehensive 5G integra-

tion is lacking, especially in developing countries. How-

ever, we are hopeful that recent advances in sequencing,
Current Opinion in Plant Biology 2020, 56:190–196
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phenotyping and data science will accelerate utilization of

the 5G strategy in coordinated crop improvement pro-

grams worldwide. In this context, capacity building of

young scientists in developing countries is required in 5G

breeding to handle, analyze and interpret the enormous

data sets from sequencing, genotyping, phenotyping,

-omics and systems biology studies pursued across

large-scale germplasm collections. In particular, training

on breeder-friendly pipelines, analytical and decision

support tools and databases related to identification of

variants and haplotype, diversity analysis, sequencing-

based trait mapping, identification of GE targets and

implementation of GB methodologies will be very help-

ful. In summary, a comprehensively applied 5G breeding

can enhance the precision, efficiency and effectiveness of

breeding programs to develop climate-resilient, high-

yielding and nutritious varieties while delivering a high

rate of genetic gain in any breeding program, including in

developing countries where these gains are most needed.
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