137 research outputs found
Modified gravity with negative and positive powers of the curvature: unification of the inflation and of the cosmic acceleration
The modified gravity, which eliminates the need for dark energy and which
seems to be stable, is considered. The terms with positive powers of the
curvature support the inflationary epoch while the terms with negative powers
of the curvature serve as effective dark energy, supporting current cosmic
acceleration. The equivalent scalar-tensor gravity may be compatible with the
simplest solar system experiments.Comment: 23 pages, 3 figures, discussion is extended, references added,
version to appear in PR
Regional Conformational Flexibility Couples Substrate Specificity and Scissile Phosphate Diester Selectivity in Human Flap Endonuclease 1
Human flap endonuclease-1 (hFEN1) catalyzes the divalent metal ion-dependent removal of single-stranded DNA protrusions known as flaps during DNA replication and repair. Substrate selectivity involves passage of the 5âČ-terminus/flap through the arch and recognition of a single nucleotide 3âČ-flap by the α2âα3 loop. Using NMR spectroscopy, we show that the solution conformation of free and DNA-bound hFEN1 are consistent with crystal structures; however, parts of the arch region and α2âα3 loop are disordered without substrate. Disorder within the arch explains how 5âČ-flaps can pass under it. NMR and single-molecule FRET data show a shift in the conformational ensemble in the arch and loop region upon addition of DNA. Furthermore, the addition of divalent metal ions to the active site of the hFEN1âDNA substrate complex demonstrates that active site changes are propagated via DNA-mediated allostery to regions key to substrate differentiation. The hFEN1âDNA complex also shows evidence of millisecond timescale motions in the arch region that may be required for DNA to enter the active site. Thus, hFEN1 regional conformational flexibility spanning a range of dynamic timescales is crucial to reach the catalytically relevant ensemble
Constraints on diffuse neutrino background from primordial black holes
We calculated the energy spectra and the fluxes of electron neutrino emitted
in the process of evaporation of primordial black holes (PBHs) in the early
universe. It was assumed that PBHs are formed by a blue power-law spectrum of
primordial density fluctuations. We obtained the bounds on the spectral index
of density fluctuations assuming validity of the standard picture of
gravitational collapse and using the available data of several experiments with
atmospheric and solar neutrinos. The comparison of our results with the
previous constraints (which had been obtained using diffuse photon background
data) shows that such bounds are quite sensitive to an assumed form of the
initial PBH mass function.Comment: 18 pages,(with 7 figures
Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term
In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW)
cosmological models by considering three different forms of variable :
, and
. It is found that, the connecting free parameters of the
models with cosmic matter and vacuum energy density parameters are equivalent,
in the context of higher dimensional space time. The expression for the look
back time, luminosity distance and angular diameter distance are also derived.
This work has thus generalized to higher dimensions the well-known results in
four dimensional space time. It is found that there may be significant
difference in principle at least, from the analogous situation in four
dimensional space time.Comment: 16 pages, no figur
Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men
The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective leg blood flow (LBF), muscle microvascular blood volume (MBV) and MPS were measured under postabsorptive and postprandial (I.V glamin, dextrose to sustain glucose ~7.5 mmol·l-1) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time as nutrition began. Leg [femoral artery] blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound (CEUS) using DefinityTM perflutren contrast agent and MPS using [1, 2-13C2] leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism
Superimposed Oscillations in the WMAP Data?
The possibility that the cosmic variance outliers present in the recently
released WMAP multipole moments are due to oscillations in the primordial power
spectrum is investigated. Since the most important contribution to the WMAP
likelihood originates from the outliers at relatively small angular scale
(around the first Doppler peak), special attention is paid to these in contrast
with previous studies on the subject which have concentrated on the large
scales outliers only (i.e. the quadrupole and octupole). As a physically
motivated example, the case where the oscillations are of trans-Planckian
origin is considered. It is shown that the presence of the oscillations causes
an important drop in the WMAP chi square of about fifteen. The F-test reveals
that such a drop has a probability less than 0.06% to occur by chance and can
therefore be considered as statistically significant.Comment: 9 pages, 3 figures, uses RevTex 4, references added, matches
published versio
- âŠ