1,025 research outputs found

    Effects of oestrogen administration on vitamin B6 and tryptophan metabolism in the rat

    Get PDF
    1. In order to assess the effects of oestrogens on the metabolism of tryptophan and vitamin B6, ovariectomized rats have been maintained on diets providing known amounts of tryptophan, nicotinamide and vitamin B6. They received oestrone sulphate, 210 micrograms/kg body-wt per d, either incorporated in the diet for 8 weeks, or by daily intraperitoneal injection for periods of 1-3 d. 2. Oestrone sulphate administration caused a slight reduction in the concentration of pyridoxal phosphate in plasma. It had no effect on the concentration of pyridoxal phosphate in liver or kidney, the urinary excretion of 4-pyridoxic acid, the activation of erythrocyte aspartate aminotransferase (L-aspartate:2-oxo-glutarate aminotransferase, EC 2. 6. 1. 1) by incubation with added pyridoxal phosphate, or the activity of pyridoxal oxidase (aldehyde:oxygen oxido-reductase, EC 1.2.3.1) in the liver. 3. Oestrone sulphate administration caused an increase in the urinary excretion of kynurenine and a reduction in the activity of liver kynureninase (L-kynurenine hydrolase, EC 3.7.1.3). It had no effect on the urinary excretion of N1-methyl nicotinamide or the concentrations of nicotinamide nucleotides in blood, liver or kidney. 4. There was a considerable excess of the apoenzyme of kynureninase in the liver. Incubation of liver homogenates with added pyridoxal phosphate led to a 4- to 5-fold increase in activity. 5. We conclude that there is no evidence of any significant effect of oestrogens on vitamin B6. It is suggested that abnormalities of tryptophan metabolism in women receiving oestrogens, which have been widely attributed to drug-induced vitamin B6 depletion, can be accounted for by inhibition of kynureninase by oestrogen metabolites

    Geometric aspects of space-time reflection symmetry in quantum mechanics

    Get PDF
    For nearly two decades, much research has been carried out on properties of physical systems described by Hamiltonians that are not Hermitian in the conventional sense, but are symmetric under space-time reflection; that is, they exhibit PT symmetry. Such Hamiltonians can be used to model the behavior of closed quantum systems, but they can also be replicated in open systems for which gain and loss are carefully balanced, and this has been implemented in laboratory experiments for a wide range of systems. Motivated by these ongoing research activities, we investigate here a particular theoretical aspect of the subject by unraveling the geometric structures of Hilbert spaces endowed with the parity and time-reversal operations, and analyze the characteristics ofPT -symmetric Hamiltonians. A canonical relation between aPT -symmetric operator and a Hermitian operator is established in a geometric setting. The quadratic form corresponding to the parity operator, in particular, gives rise to a natural partition of the Hilbert space into two halves corresponding to states having positive and negative PT norm. Positive definiteness of the norm can be restored by introducing a conjugation operator C ; this leads to a positive-definite inner product in terms of CPT conjugation

    Spawning rings of exceptional points out of Dirac cones

    Get PDF
    The Dirac cone underlies many unique electronic properties of graphene and topological insulators, and its band structure--two conical bands touching at a single point--has also been realized for photons in waveguide arrays, atoms in optical lattices, and through accidental degeneracy. Deformations of the Dirac cone often reveal intriguing properties; an example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone into isolated Landau levels. A seemingly unrelated phenomenon is the exceptional point, also known as the parity-time symmetry breaking point, where two resonances coincide in both their positions and widths. Exceptional points lead to counter-intuitive phenomena such as loss-induced transparency, unidirectional transmission or reflection, and lasers with reversed pump dependence or single-mode operation. These two fields of research are in fact connected: here we discover the ability of a Dirac cone to evolve into a ring of exceptional points, which we call an "exceptional ring." We experimentally demonstrate this concept in a photonic crystal slab. Angle-resolved reflection measurements of the photonic crystal slab reveal that the peaks of reflectivity follow the conical band structure of a Dirac cone from accidental degeneracy, whereas the complex eigenvalues of the system are deformed into a two-dimensional flat band enclosed by an exceptional ring. This deformation arises from the dissimilar radiation rates of dipole and quadrupole resonances, which play a role analogous to the loss and gain in parity-time symmetric systems. Our results indicate that the radiation that exists in any open system can fundamentally alter its physical properties in ways previously expected only in the presence of material loss and gain

    PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators

    Get PDF
    Abstract In the present work, we explore the case of a general PT -symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrödinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations

    Trading-off Data Fit and Complexity in Training Gaussian Processes with Multiple Kernels

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordLOD 2019: Fifth International Conference on Machine Learning, Optimization, and Data Science, 10-13 September 2019, Siena, ItalyGaussian processes (GPs) belong to a class of probabilistic techniques that have been successfully used in different domains of machine learning and optimization. They are popular because they provide uncertainties in predictions, which sets them apart from other modelling methods providing only point predictions. The uncertainty is particularly useful for decision making as we can gauge how reliable a prediction is. One of the fundamental challenges in using GPs is that the efficacy of a model is conferred by selecting an appropriate kernel and the associated hyperparameter values for a given problem. Furthermore, the training of GPs, that is optimizing the hyperparameters using a data set is traditionally performed using a cost function that is a weighted sum of data fit and model complexity, and the underlying trade-off is completely ignored. Addressing these challenges and shortcomings, in this article, we propose the following automated training scheme. Firstly, we use a weighted product of multiple kernels with a view to relieve the users from choosing an appropriate kernel for the problem at hand without any domain specific knowledge. Secondly, for the first time, we modify GP training by using a multi-objective optimizer to tune the hyperparameters and weights of multiple kernels and extract an approximation of the complete trade-off front between data-fit and model complexity. We then propose to use a novel solution selection strategy based on mean standardized log loss (MSLL) to select a solution from the estimated trade-off front and finalise training of a GP model. The results on three data sets and comparison with the standard approach clearly show the potential benefit of the proposed approach of using multi-objective optimization with multiple kernels.Natural Environment Research Council (NERC

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Inorganic carbon physiology underpins macroalgal responses to elevated CO2

    Get PDF
    Beneficial effects of CO2 on photosynthetic organisms will be a key driver of ecosystem change under ocean acidification. Predicting the responses of macroalgal species to ocean acidification is complex, but we demonstrate that the response of assemblages to elevated CO2 are correlated with inorganic carbon physiology. We assessed abundance patterns and a proxy for CO2:HCO3- use (\u3b413C values) of macroalgae along a gradient of CO2 at a volcanic seep, and examined how shifts in species abundance at other Mediterranean seeps are related to macroalgal inorganic carbon physiology. Five macroalgal species capable of using both HCO3- and CO2 had greater CO2 use as concentrations increased. These species (and one unable to use HCO3-) increased in abundance with elevated CO2 whereas obligate calcifying species, and non-calcareous macroalgae whose CO2 use did not increase consistently with concentration, declined in abundance. Physiological groupings provide a mechanistic understanding that will aid us in determining which species will benefit from ocean acidification and why

    Dynamics of generalized PT-symmetric dimers with time-periodic gain–loss

    Get PDF
    A parity-time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrödinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by finding two constants of motion. Firstly, a generalized problem using Melnikov-type analysis and topological degree arguments is studied for showing the existence of periodic (libration), shift- periodic (rotation), and chaotic solutions. Then these general results are applied to the PT-symmetric dimer. It is interestingly shown that if a sufficient condition is satisfied, then rotation modes, which do not exist in the dimer with constant gain–loss, will persist. An approximate threshold for PT-broken phase corresponding to the disappearance of bounded solutions is also presented. Numerical study is presented accompanying the analytical results

    Supermassive black holes do not correlate with galaxy disks or pseudobulges

    Full text link
    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they appear not to correlate with galaxy disks. Disk-grown pseudobulges are intermediate in properties between bulges and disks. It has been unclear whether they do or do not correlate with black holes in the same way that bulges do, because too few pseudobulges were classified to provide a clear result. At stake are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and galaxies with pseudobulges grow as low-level Seyferts. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.Comment: 6 pages, 3 Postscript figures, 1 table; to appear in Nature (20 January 2011
    • 

    corecore