205 research outputs found
Cortical topological network changes following optic neuritis
OBJECTIVE: To differentiate between visual cortical network topology changes following optic neuritis (ON) stemming from different inflammatory disease types, we used mathematical graph theory-based tools to analyze functional imaging data. METHODS: Sixty-two patients were recruited into this cross-sectional study, 23 of whom had neuromyelitis optica spectrum disorder (NMOSD) with ON, 18 with clinically isolated syndrome (CIS)-ON, and 21 with other CIS episodes. Twenty-six healthy controls (HCs) were also recruited. All participants underwent resting-state functional MRI. Visual networks were defined using 50 visual regions of interest. Analysis included graph theory metrics, including degree, density, modularity, and local and global efficiency. RESULTS: Visual network density shows decreased connectivity in all patient groups compared with controls. A higher degree of connections is seen in both ON groups (CIS and NMOSD) compared with the the non-ON group. This pattern is most pronounced in dorsal-lateral regions. Information transfer efficiency and modularity were reduced in both CIS groups, but not in the NMOSD group, compared with the HC group. CONCLUSIONS: Visual network density appears affected by the neurologic deficit sustained (ON), and connectivity changes are more evident in dorsal-lateral regions. Efficiency and modularity appear to be associated with the specific disease type (CIS vs NMOSD). Thus, topological cortical changes in the visual system are associated with the type of neurologic deficit within the limits set on them by the underlying pathophysiology. We suggest that cortical patterns of activity should be considered in the outcome of the patients despite the localized nature of ON
A Universal Critical Density Underlying the Physics of Electrons at the LaAlO3/SrTiO3 Interface
The two-dimensional electron system formed at the interface between the
insulating oxides LaAlO3 and SrTiO3 exhibits ferromagnetism, superconductivity,
and a wide range of unique magnetotransport properties. A key challenge is to
find a unified microscopic mechanism that underlies these emergent phenomena.
Here we show that a universal Lifshitz transition between d-orbitals lies at
the core of the observed transport phenomena in this system. Our measurements
find a critical electronic density at which the transport switches from single
to multiple carriers. This density has a universal value, independent of the
LaAlO3 thickness and electron mobility. The characteristics of the transition,
its universality, and its compatibility with spectroscopic measurements
establish it as a transition between d-orbitals of different symmetries. A
simple band model, allowing for spin-orbit coupling at the atomic level,
connects the observed universal transition to a range of reported
magnetotransport properties. Interestingly, we also find that the maximum of
the superconducting transition temperature occurs at the same critical
transition, indicating a possible connection between the two phenomena. Our
observations demonstrate that orbital degeneracies play an important role in
the fascinating behavior observed so far in these oxides
Flavourful Production at Hadron Colliders
We ask what new states may lie at or below the TeV scale, with sizable
flavour-dependent couplings to light quarks, putting them within reach of
hadron colliders via resonant production, or in association with Standard Model
states. In particular, we focus on the compatibility of such states with
stringent flavour-changing neutral current and electric-dipole moment
constraints. We argue that the broadest and most theoretically plausible
flavour structure of the new couplings is that they are hierarchical, as are
Standard Model Yukawa couplings, although the hierarchical pattern may well be
different. We point out that, without the need for any more elaborate or
restrictive structure, new scalars with "diquark" couplings to standard quarks
are particularly immune to existing constraints, and that such scalars may
arise within a variety of theoretical paradigms. In particular, there can be
substantial couplings to a pair of light quarks or to one light and one heavy
quark. For example, the latter possibility may provide a flavour-safe
interpretation of the asymmetry in top quark production observed at the
Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and
LHC, and argue that their discovery represents one of our best chances for new
insight into the Flavour Puzzle of the Standard Model.Comment: 18 pp., 8 figures, references adde
Delayed self-recognition in children with autism spectrum disorder.
This study aimed to investigate temporally extended self-awareness (awareness of one’s place in and continued existence through time) in autism spectrum disorder (ASD), using the delayed self-recognition (DSR) paradigm (Povinelli et al., Child Development 67:1540–1554, 1996). Relative to age and verbal ability matched comparison children, children with ASD showed unattenuated performance on the DSR task, despite showing significant impairments in theory-of-mind task performance, and a reduced propensity to use personal pronouns to refer to themselves. The results may indicate intact temporally extended self-awareness in ASD. However, it may be that the DSR task is not an unambiguous measure of temporally extended self-awareness and it can be passed through strategies which do not require the possession of a temporally extended self-concept
Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces
A polar conductor, where inversion symmetry is broken, may exhibit directional propagation of itinerant electrons, i.e., the rightward and leftward currents differ from each other, when time-reversal symmetry is also broken. This potential rectification effect was shown to be very weak due to the fact that the kinetic energy is much higher than the energies associated with symmetry breaking, producing weak perturbations. Here we demonstrate the appearance of giant nonreciprocal charge transport in the conductive oxide interface, LaAlO3/SrTiO3, where the electrons are confined to two-dimensions with low Fermi energy. In addition, the Rashba spin???orbit interaction correlated with the sub-band hierarchy of this system enables a strongly tunable nonreciprocal response by applying a gate voltage. The observed behavior of directional response in LaAlO3/SrTiO3 is associated with comparable energy scales among kinetic energy, spin???orbit interaction, and magnetic field, which inspires a promising route to enhance nonreciprocal response and its functionalities in spin orbitronics
Optimal Path Planning for Unmanned Combat Aerial Vehicles to Defeat Radar Tracking
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76140/1/AIAA-14303-218.pd
Efeitos da quitosana no desenvolvimento in vitro de videiras cv. merlot e no crescimento micelial do fungo elsinoe ampelina.
Objetivou-se, neste trabalho, avaliar o efeito da quitosana no desenvolvimento in vitro de plântulas de videira cv. Merlot e sua atividade antifúngica sobre Elsinoe ampelina. No primeiro experimento, explantes da cultivar Merlot foram transferidos para meio de cultura DSD1, acrescido das concentrações 0; 25; 50,100; 150 e 200 mg L-1 de quitosana. Após 90 dias de cultivo in vitro, as plântulas foram avaliadas quanto ao número de raízes e de folhas, porcentagem de enraizamento e brotação, comprimento de raízes e de parte aérea, massa fresca da planta. No segundo experimento, incorporou-se às concentrações 0, 60, 120, 180, 240 e 300 mg L-1 de quitosana ao meio BDA, onde inoculou-se o fungo. Posteriormente, avaliou-se o crescimento micelial aos 6 e 9 dias de incubação a 25º C no
escuro. No primeiro experimento para as variáveis comprimento médio da parte aérea, massa fresca da planta inteira, porcentagem de enraizamento e porcentagem de estacas brotadas houve decréscimo linear em função das concentrações de quitosana. No segundo experimento, houve efeito linear negativo em função das concentrações crescentes de quitosana, sendo que a inibição do crescimento
micelial foi de 81,7%, demonstrando o grande potencial do uso de quitosana no controle da antracnose da videira
Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface
LaAlO3 and SrTiO3 are insulating, nonmagnetic oxides, yet the interface
between them exhibits a two-dimensional electron system with high electron
mobility,1 superconductivity at low temperatures,2-6 and electric-field-tuned
metal-insulator and superconductorinsulator phase transitions.3,6-8 Bulk
magnetization and magnetoresistance measurements also suggest some form of
magnetism depending on preparation conditions5,9-11 and suggest a tendency
towards nanoscale electronic phase separation.10 Here we use local imaging of
the magnetization and magnetic susceptibility to directly observe a landscape
of ferromagnetism, paramagnetism, and superconductivity. We find submicron
patches of ferromagnetism in a uniform background of paramagnetism, with a
nonuniform, weak diamagnetic superconducting susceptibility at low temperature.
These results demonstrate the existence of nanoscale phase separation as
suggested by theoretical predictions based on nearly degenerate interface
sub-bands associated with the Ti orbitals.12,13 The magnitude and temperature
dependence of the paramagnetic response suggests that the vast majority of the
electrons at the interface are localized, and do not contribute to transport
measurements.3,6,7 In addition to the implications for magnetism, the existence
of a 2D superconductor at an interface with highly broken inversion symmetry
and a ferromagnetic landscape in the background suggests the potential for
exotic superconducting phenomena.Comment: Edited version to appear in Nature Physic
Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene
Graphene-based Josephson junctions provide a novel platform for studying the
proximity effect due to graphene's unique electronic spectrum and the
possibility to tune junction properties by gate voltage. Here we describe
graphene junctions with a mean free path of several micrometres, low contact
resistance and large supercurrents. Such devices exhibit pronounced
Fabry-P\'erot oscillations not only in the normal-state resistance but also in
the critical current. The proximity effect is mostly suppressed in magnetic
fields below 10mT, showing the conventional Fraunhofer pattern. Unexpectedly,
some proximity survives even in fields higher than 1 T. Superconducting states
randomly appear and disappear as a function of field and carrier concentration,
and each of them exhibits a supercurrent carrying capacity close to the
universal quantum limit. We attribute the high-field Josephson effect to
mesoscopic Andreev states that persist near graphene edges. Our work reveals
new proximity regimes that can be controlled by quantum confinement and
cyclotron motion
- …